盆栽人蔘剛栽下一星期還沒出土芽孢和少數根鬚爛了,怎麼處理還能

2021-03-28 20:10:23 字數 5684 閱讀 6273

1樓:雲夢之巔

人蔘有可能不適合盆栽的,人蔘相當有靈性,能夠變**形,通常適合寬闊的土地。如果樓主家房前有土地,不妨栽在寬闊的土壤裡。

不定積分的含義

2樓:匿名使用者

就是求導函式是f(x)的函式

3樓:**1292335420我

性質1:設a與b均為常數,則f(a->b)[a*f(x)+b*g(x)]dx=a*f(a->b)f(x)dx+b*f(a->b)g(x)dx

性質2:設ab)f(x)dx=f(a->c)f(x)dx+f(c->b)f(x)dx

性質3:如果在區間【a,b】上f(x)恆等於1,那麼f(a->b)1dx=f(a->b)dx=b-a

性質4:如果在區間【a,b】上f(x)>=0,那麼f(a->b)f(x)dx>=0(ab)f(x)dx<=m(b-a) (ab)f(x)dx=f(c)(b-a) (a<=c<=b)成立。

4樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。

那就用數字帝國,唉

∫xdx的不定積分是什麼

5樓:demon陌

具體回答如圖:

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。

若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

6樓:匿名使用者

解∫xdx

=1/2x²+c

用到公式

∫x^ndx

=1/(n+1)x^(n+1)+c

7樓:你在做什麼

∫x^udx=(x^(u 1))/(u 1) c。因此∫xdx=∫(x^2)/2dx。

什麼叫不定積分

8樓:小小芝麻大大夢

∫f(x)dx=f(x)+c,我們把函式f(x)的所有原函式f(x)+ c(其中,c為任意常數)叫做函式f(x)的不定積分,又叫做函式f(x)的反導數。

記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。

擴充套件資料:常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c

9樓:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:

定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

函式的和的不定積分等於各個函式的不定積分的和;即:設函式及的原函式存在,則

求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式的原函式存在,

非零常數,則

ps:以下的c都是指任意積分常數。 [1]1、,a是常數

2、,其中a為常數,且a ≠ -1

3、4、

5、,其中a > 0 ,且a ≠ 1

6、7、

8、9、

10、11、

12、13、

14、15、

10樓:

f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+ c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c.不定積分

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分.

11樓:匿名使用者

不定積分就是函式的原函式,即找到所有的新函式,使得這些新函式的導數是給定的函式。它與定積分一點都不扯,定積分是一個數值,即按照黎曼積分定義取得的極限值,幾何意義是函式影象下面積。

12樓:匿名使用者

不定積分是在不設定定義域的情況下求解反函式,就是這麼通俗解釋

13樓:該上癮

不定積分表示一族積分,裡面必定含有任意常數c

14樓:旗秋寒旅卓

不定積分概念

在微分學中我們已經知道,若物體作直線運動的方程是s=f(t),

已知物體的瞬時速度v=f(t),要求物體的運動規律s=f(t)。這顯然是從函式的導數反過來要求「原來函式」的問題,這就是本節要討論的內容。

定義1已知f(x)是定義在某區間上的函式,如果存在函式f(x),使得在該區間內的任何一點都有:

那麼在該區間內我們稱函式f(x)為函式f(x)的原函式。

當然,不是任何函式都有原函式,在下一章我們將證明連續函式是有原函式的。假如f(x)有原函式f(x),那麼f(x)+

c也是它的原函式,這裡c是任意常數。因此,如果f(x)是原函式,它就有無窮多個原函式,而且f(x)+

c包含了f(x)的所有原函式。

事實上,設g(x)是它的任一原函式,那麼

根據微分中值定理的推論,

h(x)應該是一個常數c,於是有

g(x)=

f(x)+

c這就是說,f(x)的任何兩個原函式僅差一個常數。

定義2函式f(x)的全體原函式叫做f(x)的不定積分,記作

其中∫叫積分號,f(x)叫做被積函式,f(x)

dx叫做被積表示式,x叫做積分變數。

如果f(x)是f(x)的一個原函式,則由定義有

其中c是任意常數,叫做積分常數。

求原函式或不定積分的運算叫做積分法。

15樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。

那就用數字帝國

16樓:**1292335420我

這是高等數學中的概念。

原函式:已知函式f(x)是一

個定義在某區間的函式,如果存在函式f(x),使得在該區間內的任一點都有df(x)=f(x)dx,則在該區間內就稱函式f(x)為函式f(x)的原函式。對f(x)進行積分既可以得到原函式f(x),對f(x)微分就可以得到f(x)。

不定積分:相對定積分而言,其最後解得的表示式中存在不定的一個常數。對sinx+c進行微分得到cosx,其中c為任意常數,若是對cosx進行不定積分就是得到sinx+c。

若是進行定積分則是沒有不定常數,則在題目中會給出限定條件,例如原函式在x=0時值為1,則對cosx進行積分得到sinx+c,x=0時sinx+c=1,所以c=1,所以cosx的定積分為sinx+1。.

17樓:水杉

求函式f(x)的不定積分,就是要求出f(x)的所有的原函式。

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+ c(其中,c為任意常數)叫做函式f(x)的不定積分,又叫做函式f(x)的反導數,記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分

不定積分,定積分,原函式之間有什麼關係 區別。謝謝各位前輩從理論上說明。

18樓:飄飄記

一、理論不同

1、不定積分是一個函式集(各函式只相差一個常數),它就是所積函式的原函式(個數是無窮)。

定積分(它是一個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)。

2、函式 f(x)的定積分與這個函式的原函式f(x) 是緊密聯絡的. 定積分是由函式話f(x)確定的的某個值(一個數),而原函式f(x)是一個函式,它的導數是f(x),而不定積分是所有的原函式。

3、不定積分計算的是原函式(得出的結果是一個式子);定積分計算的是具體的數值(得出的借給是一個具體的數字)

擴充套件資料

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式

及的原函式存在,則

2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式

的原函式存在,

非零常數,則

19樓:不是苦瓜是什麼

聯絡:不定積分是所有原函式的稱呼,可以理解為同一個東西,是微分的逆問題。

區別:1.不定積分是一個函式集(各函式只相差一個常數),它就是所積函式的原函式(個數是無窮)。

定積分(它是一個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)。

2.函式 f(x)的定積分與這個函式的原函式f(x) 是緊密聯絡的. 定積分是由函式話f(x)確定的的某個值(一個數),而原函式f(x)是一個函式,它的導數是f(x),而不定積分是所有的原函式。

3.不定積分計算的是原函式(得出的結果是一個式子);定積分計算的是具體的數值(得出的借給是一個具體的數字)

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

20樓:匿名使用者

不定積分是一個函式集(各函式只相差一個常數),它就是所積函式的原函式(個數是無窮)

至於定積分(它是一個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)

滷雞爪一星期了還能吃嗎火龍果放冰箱一星期了,還能吃嗎?

不能吃,一般放冰箱內可保鮮1 2天不變質。滷雞爪又叫滷雞腳,是一道做法簡單,老少皆宜的家常小菜,可謂一道美食。烹製時要注意雞爪本身有膠質,所以滷好不要浸泡太久,免得滷湯變稠。儲存方法 雞爪最好趁新鮮製作成菜,一般放冰箱內可保鮮1 2天不變質。如果需要長期儲存生的雞爪,可把雞爪洗淨,在表面塗抹上少許黃...

一星期暴瘦二十斤的方法急求,一星期暴瘦二十斤的方法 ,急求

嗯我的話就是有一個星期只吃素的,早上跑步,晚上練瑜伽 瘦了4斤 一星期瘦20斤,不太可能吧 不太可能的事情就算瘦了也會 還會比原來體重更重,我一個星期瘦了6斤,到後面體重也沒有增長回去,是要循序漸進的配合一些其他的方法可以健康瘦 學生黨一星期暴瘦二十斤,一定要按這個方法才行。一 每天走路或慢跑2 5...

怎樣才能在一星期內瘦5斤!!急,如何一星期瘦五斤

不吃主食,不沾油葷,只吃水果和蔬菜 燙著吃 雞蛋一天不超過兩個,最好一天一個,餓得慌就吃兩個,無脂牛奶和無糖豆漿都可以食用。但是豆漿和雞蛋不能同時吃哦。絕食三天就可以了。我試過,我嗓子做手術前三天沒吃東西。術前稱瘦了三斤。儘可能的少吃,但什麼都要吃,一定要補充維生素營養片 要用食譜什麼的非常麻煩,也...