1樓:湯訓
小樹的影長4.8m
如果光源是太陽,光線是平行照射的,此時物體的高度和版影子的長度成正權比例(相似的直角三角形對應的直角邊成比例);
設大樹的高為a米,
所以2.4/4.8=a/11
a=5.5米。
2樓:匿名使用者
設大樹高x米:
2.4:x=4.8:11
x=2.4×11÷4.8
=5.5 米
3樓:老玩童吾性
設大樹高為x米?x=2.4x11除以4.08大約=6.47米
考研數學考的是什麼內容?
4樓:是微光吖
數一:高等數學、線性代數、概率論與數理統計。數二:高等數學、線性代數。數三:微積分、線性代數、概率論與數理統計。
數學的f(x)到底什麼意思
5樓:人設不能崩無限
f(x)是一個以x為自變數的函式。
導數(derivative),也叫導函式值。又名微商,是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
6樓:森海和你
f(x)是一個以x為自變數的函式。
給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。假設b中的元素為y。則y與x之間的等量關係可以用y=f(x)表示。
例如:y=x,也可寫成f(x)=x,意思是一樣的。
f(a)=0,是說這個函式f(x)中,當x=a時,函式值為0。
函式是發生在集合之間的一種對應關係。然後,要理解發生在a、b之間的函式關係不止且不止一個。最後,要重點理解函式的三要素。
函式的對應法則通常用解析式表示,但大量的函式關係是無法用解析式表示的,可以用影象、**及其他形式表示。
在一個變化過程中,發生變化的量叫變數(數學中,常常為x,而y則隨x值的變化而變化),有些數值是不隨變數而改變的,我們稱它們為常量。
自變數(函式):一個與它量有關聯的變數,這一量中的任何一值都能在它量中找到對應的固定值。
因變數(函式):隨著自變數的變化而變化,且自變數取唯一值時,因變數(函式)有且只有唯一值與其相對應。
函式值:在y是x的函式中,x確定一個值,y就隨之確定一個值,當x取a時,y就隨之確定為b,b就叫做a的函式值。
7樓:匿名使用者
由a={2},
解得b=-3,c=4,帶進去就出來結果了,是3±√2 ,他是 x^2-6x+7=0解出來的,囧了……
f表示functions,functions是功能的意思,函式的概念其實很廣泛,基本我們的世界任何東西都可以用函式來形容或表示,給你舉個例子,比如市場上電視機的**跟你的購買慾望就可以構成函式關係,**低了你的購買慾望就高了,**高了你的購買慾望就低了,所以**跟你的購買慾望就可以用函式來表示。以後你會學到事物是普遍聯絡的這個哲學概念,函式就是用來表示事物之間普遍聯絡的具體關係的。
f(x)中x為自變數,顧名思義下就是指不依賴於其他東西自己想變就變的量,他更多的含主動地意思,f(x)代表因為x變化跟著變化的意思,所以叫因變數。f是代表f(x)究竟是如何跟著x變的意思。
舉些函式的性質:f(x) = 3x + 2等式右邊的x和f(x)括號中的x是一個意思。若f(x-1) = 3x + 2,則f(x-1)=3(x-1)+5,所以f(x)=3x+5,不管是求隱函式還是顯函式的問題,只要抓住括號內的量才是自變數這點就可以求解,另外,看待函式一定要用變化的思維看,函式不是靜態的意思,它包含變化的各種意思,包括變化範圍,變化方式等。
8樓:匿名使用者
f(x)其實就是一個函式符號,表示一個與x有關的函式。
如以前我們用y=3x+2表示x與y之間的關係,x是自變數,y是因變數,稱y是x的一個函式;
現在用f(x)來代替y,剛才那個就可以表示為f(x)=3x+2,關係完全一樣。僅僅更加強調這是個函式,且是與自變數x有關的。
這個用f(x)的表達方式主要是從高中開始的吧,那時有很多章節專門講函式,引入函式概念是一般會講對映,也是一種量與量之間的關係,而f一般就表示那個對映方式,f(x)表示由x經過對映f之後得到的那個量,如對映方式為3x+2的話,那麼這個量f(x)就是y了。
一句話講就是把f(x)當做符號就行了。
9樓:匿名使用者
我不懂怎麼科學的解釋 只能說下自己的理解
f(x)是y的進化版表達方式f(x)和y的含義是相同的 但是多了個x可以表達
當y=2x+3時
f(x)=2x+3
f(1)=2×1+3=5
f(2)=2×2+3=7
f(3)=2×3+3=9
f(n)=2×n+3=…
10樓:化學天才
解:由f(x)=x,可得f(x)-x=0,即x^2+(b-1)x+c=0
由a={2},可得上述方程只有x=2這一個解,代入得 4+2(b-1)+c=0 (1)又判別式得塔=(b-1)^2-4c=0 (2)解(1)(2)聯立的方程組,得 b=-3且c=4 即f(x)=x^2-3x+4
由f(x-1)=x+1 有 (x-1)^2-3(x-1)+4=x+1解得x=-1或x=7
所以集合b=
附:f(x)表示一個變數為x的函式
11樓:匿名使用者
其它我就不多說了
就幫你解一下題
f(x)=x平方+bx+c=x^2+bx+ca={x|f(x)=x},且a={2}
說明方程f(x)=x有唯一解x=2
x^2+bx+c=x 有唯一解x=2
x^2+(b-1)x+c=0
那麼判別式(b-1)^2-4c=0 . 4c=(b-1)^2 (1)
且4+2(b-1)+c=0, 2+2b+c=0, 8+8b+4c=0 (2)
(1)代人(2)
(b-1)^2+8+8b=0
b^2+6b+9=0
b=-3 ,c=4
那麼f(x)=x^2+bx+c=x^2-3x+4f(x-1)=(x-1)^2-3(x-1)+4=x^2-5x+8對bf(x-1)=x+1
則x^2-5x+8=x+1
x^2-6x+7=0
x=3±√2
12樓:匿名使用者
f表示functions,是函式的意思
x是自變數,f(x)是因變數,就是以x為未知量的式子就是隨著x的變化,f(x)也跟著變化
每個x都對應一個f(x)的值(f(x)的值可以相等的)例如,f(x)=2x,f(x)=x^2(x的平方)等等
13樓:
一般來說f(x)後面接關於的x函式,可以說f(x)的值=y,比如f(x)=3x,有f(3)=9(等同於y=3x)
14樓:
f(x)x是自變數,f表示因變數,即函式和自變數的對應關係,就是函式關係。可以把f(x)看成是y做題,一般不會錯
15樓:匿名使用者
f是方程 ,注意f(x)是含有未知量x的方程,y=f(x)為方程等式
y>f(x)為方程不等式,注意概念
如還不懂可以hi我
16樓:秋風有何事
f(x)是函式的一種表達形式
x是自變數,f表示因變數,即函式和自變數的對應關係,就是函式關係。
17樓:匿名使用者
如有 y = 3x + 2
則可寫成 f(x) = 3x + 2
f(x)其實就相當y 起來一個替代的作用
18樓:匿名使用者
你這個題,還有東西沒說完吧。
19樓:匿名使用者
關於x的一個函式,就是以x為變數的一個函式
20樓:匿名使用者
f(x)意思就是代表一個式子,這個式子的未知數是x,這個式子的形式不一定,可能是x+1,x*x,亂七八糟,怎麼都行,就是因為式子不一定,不好表達,所以就用f(x)
21樓:匿名使用者
f(x)是函式的一種表達形式,可以理解為對x的"處理".
22樓:合規部
奧力給挺搞笑的好幾次
23樓:冄冄
f(x)也就是f個x,相當於2(3)也就是2個3.
學數學的好處是什麼呢?
24樓:匿名使用者
學數學的好處如下:
1、數學是一切科學的基礎,一切重大科技進展無不以數學息息相關。沒有了數學就沒有電腦、電視、太空梭,就沒有今天這麼豐富多彩的生活。
2、數學是一種工具學科,是學習其他學科的基礎,同時還是提高人的判斷能力、分析能力、理解能力的學科。
3、數學不僅是一門科學,而且是一種普遍適用的技術。它是科學的大門和鑰匙,學數學是令自己變的理性的一個很重要的措施,數學本身也有自身的樂趣。
4、數學能讓你思考任何問題的時候都比較縝密,而不至於思緒紊亂。還能使你的腦子反映靈活,對突發事件的處理手段也更理性。
5、數學給予人們的不僅是知識,更重要的是能力,這種能力包括觀察實驗、收集資訊、歸納類比、直覺判斷、邏輯推理、建立模型和精確計算。這些能力和培養,將使人終身受益。
6、經驗是數學的基礎,問題是數學的心臟,思考是數學的核心,發展是數學的目標,思想方法是數學的靈魂……數學思想方法是數學知識的精髓,是分析、解決數學問題的基本原則,也是數學素養的重要內涵,它是培養學生良好思維品質的催化劑。
7、數學與我們的生活有著密切的聯絡,讓學生認識到現實生活中蘊涵著大量的數學資訊,數學在現實生活中有著廣泛的應用,並從中體會到數學的價值,增進對數學的理解和應用數學的信心等。
8、讓學生體會到數學源於生活、用於生活的同時,更應該讓學生體會到數學高於生活,體會到數學可以帶動社會的發展,帶動生活質量的提高,這樣更能激發學生學好數學。
9、數學應用之廣泛,小至日常生活中柴米油鹽醬醋茶的買賣、利率、保險、醫療費用的計算,大至天文地理、環境生態、資訊網路、質量控制、管理與**、大型工程、農業經濟、國防科學、航天事業均大量存在著運用數學的蹤影。
擴充套件資料
數學的嚴謹性:
1、數學語言亦對初學者而言感到困難,如何使這些字有著比日常用語更精確的意思,亦困惱著初學者,如開放和域等字在數學裡有著特別的意思,
2、數學術語亦包括如同胚及可積性等專有名詞,但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性,數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。
3、嚴謹是數學證明中很重要且基本的一部分。數學家希望他們的定理以系統化的推理依著公理被推論下去,這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或"證明",而這情形在歷史上曾出現過許多的例子。
4、在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹。
5、牛頓為了解決問題所作的定義,到了十九世紀才讓數學家用嚴謹的分析及正式的證明妥善處理。
6、數學家們則持續地在爭論電腦輔助證明的嚴謹度,當大量的計算難以被驗證時,其證明亦很難說是有效地嚴謹。
我是一棵大樹,保護著一棵小樹仿句
比如說父親保護著孩子 就像大樹保護小樹一樣,要是父母老了做孩子的也應該去照顧父母,要說大樹和小樹對比。父母年齡大了,就像個小孩一樣,做兒女的就應該像大樹一樣去保護老年人就像小樹一樣去保護她們,應該盡心的去保護。我是一位父親,保護著一位孩子成長。我是一位大女孩,保護著一位小女孩。如果你是一棵大樹,我願...
兩棵大樹中間一棵小樹,怎麼寫的作文
在一個漫畫bai中我看到了 du一幅圖,是兩棵大zhi樹中間有一棵 dao小樹,一棵大樹 為小樹內擋著太陽,一棵容大樹為小樹擋著雨,我的腦海裡立刻產生了一個愛的故事 從前,在一片森林裡,有兩棵大樹有了自己的孩子 小樹寶寶.兩棵大樹為了讓小樹健健康康變為它遮風擋雨,不想讓小樹受到一點傷害 春天,小樹在...
一棵小樹被風颳倒了,我怎麼辦,有一棵小樹,被風吹倒了,請你想辦法固定它
扶起來,再給它蓋上土就好了 如果想動手的話,去扶一下。對著斷的地方折了,有根還能長 有一棵小樹,被風吹倒了,請你想辦法固定它 用幾根木棍做一個三腳架即可解決問題 這一點毋庸置疑很肯定的 求個採納 謝謝!在小樹根部打根木樁,把小樹扶正,用布條把它綁在木樁上,再在小樹根部培土。三根木棍一撐就可以啦 我發...