什麼是黑洞中心,什麼是「數字黑洞」?

2022-01-12 01:38:03 字數 5108 閱讀 2320

1樓:廣西師範大學出版社

事實上,宇宙中各類「黑洞」的運動形態和形成原理就像我們用肉眼能夠看到的許多自然渦流現象一樣。比如地球上大氣運動產生的熱帶氣旋——「颱風」,在「颱風」外圍是急速旋轉的氣流形成的急風暴雨區域,能量很大,而在空氣渦流中心區域——「颱風眼」,因為空氣稀薄,壓力相對很小,對周圍產生強大吸引力,所以氣流不易進入,反而是風平浪靜的區域,從衛星圖上能夠清晰地看到「颱風」的圓形漩渦狀雲團。另外,還有江河湖海中的水渦流也是圓形漩渦狀的,水渦流同樣有很大的能量和吸引力,當物體接近時會被吸引進漩渦之中。

「黑洞」,其實就和「颱風」、「水流漩渦」這樣能夠直**到的渦流現象很像,可以說是宇宙中物質運動的產物。它的巨大能量和引力主要來自物質急速運動產生的磁場。

所謂「黑洞」中心,是指那些外界物質不容易進入、有形物質又很少的區域。因此,在「黑洞」的中心都是空白區域。由於它對四周物質的吸引力在每個方向幾乎都是均勻的,通常在「黑洞」周圍物質執行的軌跡都是圓形漩渦狀的。

因為「黑洞」物質分佈密度都不相同,它的周圍通常還會伸出一些旋臂(如可見的星系旋臂),從而造成同方向輻射強弱程度不同的射線脈衝現象(即脈衝星)。

通常情況下,在「黑洞」引力吸積過程中,物質的數量和密度持續在增加,磁場漩渦範圍會相應增大,能量和引力顯著增強,而且會吸引更多的物質,這樣像滾雪球一樣不斷髮展。當「黑洞」周圍物質達到相當體積和密度時,對光的反射、折射作用逐漸加強,到了某種程度就發展成為能夠通過光學望遠鏡直接觀察到的有形天體——「星雲」,正是從恆星級「黑洞」中孕育出新生的天體「星雲」。這種初期的有形天體多數是呈環狀(環狀星雲),它的構成物質相對較稀薄,因此,形狀是很模糊的。

就這樣,隨著「星雲」體積的不斷膨脹,於是就有了幾十億年以上向「恆星」發展的演變程序。

2樓:張嘉年

黑洞中心是奇點

黑洞內部結構模型**解

黑洞內部中心奇點結構模型**解

圖中+-號代表不可分割的最小正負弦資訊單位-弦位元(string bit)

(名物理學家約翰.惠勒john wheeler曾有句名言:萬物源於位元 it from bit

量子資訊研究興盛後,此概念昇華為,萬物源於量子位元)注:位元即位元

什麼是「數字黑洞」?

3樓:最愛彩虹糖

1、數字黑洞是指某些數字經過一定的運算得到一個迴圈或確定的答案。比如黑洞數6174,隨便選一個四位數,如1628,先把組成的四個數字從大到小排列得到8621,再把原數1628的四個數字由小到大排列得到1268,用大的減小的:8621-1268=7353。

按上面的辦法重複,由大到小排列7353,得到7533,由小到大排列得到3357,大減小:7533-3357=4176,把4176再重複一遍,得7641-1467=6174。所以6174就是一個黑洞數字。

2、任取一個數,相繼依次寫下它所含的偶數的個數,奇數的個數與這兩個數字的和,將得到一個正整數。對這個新的數再把它的偶數個數和奇數個數與其和拼成另外一個正整數,如此進行,最後必然停留在數123。

例:所給數字 14741029

第一次計算結果 448

第二次計算結果 303

第三次計算結果 123

將三個數字的和乘以2,得數作為重組三位數的百位數和十位數;將原數的十位數字與個位數字的和(若得兩位數,再將數字相加得出和),作為新三位數的個位數。此後,再對重組的三位數重複這一過程,你將看到,必有一數墮落陷阱。

如,任寫一個數843,按要求,其轉換過程是:

(8+4+3)×2=30……作新三位的百位、十位數。4+3=7……作新三位數的個位數。組成新三位數307,重複上述過程,繼續下去是:

307→207→187→326→228→241→145→209→229→262→208→208→……

結果,208落入「陷阱」。

再如:411,按要求,其轉換過程是:

411→122→104→104→……

結果,104落入了陷阱。

假如將三位數按照下面的規則運算下去,同樣會出現數字「陷阱」。

(1)若是3的倍數,便將該數除以3。

(2)若不是3的倍數,便將各數位的數加起來再平方。

如:126

結果進入「169-256」的死迴圈,再也跳不出去了。

再如:368

結果,1進入了「黑洞」。

另有一種方法,可以把任何一個多位數,迅速地推入「陷阱」。

操作方法是:

第一步:數出多位數含有偶數(包括0)的個數,並以它作新數的百位數;

第二步:數出多位數含有奇數的個數,並以它作新數的十位數。

第三步:將位數所含數字作新數的個位數,組成新數後,對新數重複上述過程。

擴充套件資料

水仙花數黑洞

任意找一個3的倍數的數,先把這個數的每一個數位上的數字都立方,再相加,得到一個新數,然後把這個新數的每一個數位上的數字再立方、求和,......,重複運算下去,就能得到一個固定的數——153,我們稱它為數字「黑洞」。

例如:1、63是3的倍數,按上面的規律運算如下:

6^3+3^3=216+27=243,

2^3+4^3+3^3=8+64+27=99,

9^3+9^3=729+729=1458,

1^3+4^3+5^3+8^3=1+64+125+512=702

7^3+0^3+2^3=351,

3^3+5^3+1^3=153,

1^3+5^3+3^3=153,

2、3*3*3=27,

2*2*2+7*7*7=351,

3*3*3+5*5*5+1*1*1=153

...繼續運算下去,結果都為153,如果換另一個3的倍數,試一試,仍然可以得到同樣的結論,因此153被稱為一個數字黑洞。

除了0和1自然數中各位數字的立方之和與其本身相等的只有153、370、371和407(此四個數稱為「水仙花數」)。例如為使153成為黑洞,我們開始時取任意一個可被3整除的正整數。分別將其各位數字的立方求出,將這些立方相加組成一個新數然後重複這個程式.

除了「水仙花數」外,同理還有四位的「玫瑰花數」(有:1634、8208、9474)、五位的「五角星數」(有54748、92727、93084),當數字個數大於五位時,這類數字就叫做「自冪數」。

4樓:

任選四個數,將它們從大到小排列,再從小到大排列,用前者減去後者,得到一個新的數。反覆這樣操作,七步以內一定會得到6174。任選三個數,將他們從大到小排列,再從小到大排列,用前者減去後者,得到一個新的數。

反覆這樣操作,七步以內一定會得到495。這就是數字黑洞。

5樓:匿名使用者

四位數黑洞6174

把一個四位數的四個數字由小至大排列,組成一個新數,又由大至小排列排列組成一個新數,這兩個數相減,之後重複這個步驟,只要四位數的四個數字不重複,數字最終便會變成 6174。

例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 這個數也會變成 6174,7641 - 1467 = 6174。

任取一個四位數,只要四個數字不全相同,按數字遞減順序排列,構成最大數作為被減數;按數字遞增順序排列,構成最小數作為減數,其差就會得6174;如不是6174,則按上述方法再作減法,至多不過10步就必然得到6174。

如取四位數5679,按以上方法作運算如下:

9765-5679=4086 8640-4068=4572 7542-2457=5085

8550-5058=3492 9432-2349=7083 8730-3078=5652

6552-2556=3996 9963-3699=6264 6642-2466=4176

7641-1467=6174

那麼,出現6174的結果究竟有什麼科學依據呢?

設m是一個四位數而且四個數字不全相同,把m的數字按遞減的次序排列,

記作m(減);

然後再把m中的數字按遞增次序排列,記作m增,記差m(減)-m(增)=d1,從m到d1是經過上述步驟得來的,我們把它看作一種變換,從m變換到d1記作:t(m)= d1把d1視作m一樣,按上述法則做減法得到d2 ,也可看作是一種變換,把d1變換成d2,

記作:t(d1)= d2

同樣d2可以變換為d3;d3變換為d4……,既t(d2)= d3,t(d3)= d4……

現在我們要證明,至多是重複7次變換就得d7=6174。

證明證:四位數總共有9999-999=9000個,其中除去四個數字全相同的,餘下9000-10=8990個數字不全相同.我們首先證明,變換t把這8990個數只變換成54個不同的四位數.

設a、b、c、d是m的數字,並:

a≥b≥c≥d

因為它們不全相等,上式中的等號不能同時成立.我們計算t(m)

m(減)=1000a+100b+10c+d

m(增)=1000d+100c+10b+a

t(m)= d1= m(減)-m(增)=1000(a-d)+100(b-c)+10(c-b)+d-a=999(a-d)+90(b-c)

我們注意到t(m)僅依賴於(a-d)與(b-c),因為數字a,b,c,d不全相等,因此由a≥b≥c≥d可推出;a-d>0而b-c≥0.

此外b、c在a與d之間,所以a-d≥b-c,這就意味著a-d可以取1,2,…,9九個值,並且如果它取這個集合的某個值n,b-c只能取小於n的值,至多取n.

例如,若a-d=1,則b-c只能在0與1中選到,在這種情況下,t(m)只能取值:

999×⑴+90×(0)=0999

999×⑴+90×⑴=1089

類似地,若a-d=2,t(m)只能取對應於b-c=0,1,2的三個值.把a-d=1,a-d=2,…,a-d=9的情況下b-c所可能取值的個數加起來,我們就得到2+3+4+…+10=54

這就是t(m)所可能取的值的個數.在54個可能值中,又有一部分是數碼相同僅僅是數位不同的值,這些數值再變換t(m)中都對應相同的值(數學上稱這兩個數等價),剔除等價的因數,在t(m)的54個可能值中,只有30個是不等價的,它們是:

9990,9981,9972,9963,9954,9810,9711,9621,9531,9441,8820,8730,8721,8640,8622,8550,

8532,8442,7731,7641,7632,7551,7533,7443,6642,6552,6543,5553,5544.

對於這30個數逐個地用上述法則把它換成最大與最小數的差,至多6步就出現6174這個數.證畢.

什麼是黑洞,什麼是「數字黑洞」?

科學家們以愛因斯坦廣義相對論,預言了一種叫作 黑洞 的天體,你知道什麼是 黑洞 嗎?黑洞 黑,表明它不會向外界發射或反射任何光線電磁波。洞,說的是任何東西,只要一進入它的邊界,就休想再溜出去.黑洞是由德國數學家卡爾 史瓦西首次計算出來的,在黑洞周圍任何東西無論是訊號 光還是物質都無法逃逸,時空在這裡...

黑洞是什麼,什麼是黑洞?

科學家們以愛因斯坦廣義相對論,預言了一種叫作 黑洞 的天體,你知道什麼是 黑洞 嗎?黑洞 黑,表明它不會向外界發射或反射任何光線電磁波。洞,說的是任何東西,只要一進入它的邊界,就休想再溜出去.黑洞是由德國數學家卡爾 史瓦西首次計算出來的,在黑洞周圍任何東西無論是訊號 光還是物質都無法逃逸,時空在這裡...

黑洞是什麼,什麼是黑洞?

黑洞是由德國數學家卡爾 史瓦西首次計算出來的,在黑洞周圍任何東西無論是訊號 光還是物質都無法逃逸,時空在這裡成為了一個無底洞,這麼一個看不到摸不到也探測不到的地方就叫黑洞。科學家們以愛因斯坦廣義相對論,預言了一種叫作 黑洞 的天體,你知道什麼是 黑洞 嗎?黑洞 黑,表明它不會向外界發射或反射任何光線...