在電腦中的原碼,反碼,補碼都是什麼意思啊

2021-03-05 16:46:25 字數 7194 閱讀 9517

1樓:富察運旺虞雀

第一位是符號位,-23的這位是1。

23的原碼是10111,前面補兩個0,就是0010111所以-23的原碼就是10010111

反碼就是11101000

補碼就是反碼+1=11101001

2樓:永桂花佴風

1、原碼的定義

原碼錶示法是機器數的一種簡單的表示法。其符號位用0表示正號,用:表示負號,數值一般用二進位制形式表示。設有一數為x,則原碼錶示可記作[x]原。

①小數原碼的定義

[x]原=x

0≤x<11-x

-1<x≤

0例如:

x=+0.1011

,[x]原=

01011

x=-0.1011

[x]原=

11011

②整數原碼的定義

[x]原=x

0≤x<2n

2n-x-2n

<x≤0

原碼錶示數的範圍與二進位制位數有關。當用8位二進位制來表示小數原碼時,其表示範圍:

最大值為0.1111111,其真值約為(0.99)10

最小值為1.1111111,其真值約為(一0.99)10

當用8位二進位制來表示整數原碼時,其表示範圍:

最大值為01111111,其真值為(127)10

最小值為11111111,其真值為(-127)10

在原碼錶示法中,對0有兩種表示形式:

[+0]原=00000000

[-0]

原=10000000

2、補碼的定義

機器數的補碼可由原碼得到。如果機器數是正數,則該機器數的補碼與原碼一樣;如果機器數是負數,則該機器數的補碼是對它的原碼(除符號位外)各位取反,並在未位加1而得到的。設有一數x,則x的補碼錶示記作[x]補。

①小數補碼的定義

[x]補=x

0≤x<12+x

-1≤x<

0例如:

x=+0.1011,

[x]補=

01011

x=-0.1011,

[x]補=

10101

②整數補碼的定義

[x]補=x

0≤x<2n

2n+1+x-2n

≤x<0

補碼錶示數的範圍與二進位制位數有關。當採用8位二進位制表示時,小數補碼的表示範圍:

最大為0.1111111,其真值為(0.99)10

最小為1.0000000,其真值為(一1)10

採用8位二進位制表示時,整數補碼的表示範圍:

最大為01111111,其真值為(127)10

最小為10000000,其真值為(一128)10

在補碼錶示法中,0只有一種表示形式:

[+0]補=00000000

[+0]補=11111111+1=00000000(由於受裝置字長的限制,最後的進位丟失)

所以有[+0]補=[+0]補=00000000

3、反碼的定義

機器數的反碼可由原碼得到。如果機器數是正數,則該機器數的反碼與原碼一樣;如果機器數是負數,則該機器數的反碼是對它的原碼(符號位除外)各位取反而得到的。設有一數x,則x的反碼錶示記作[x]反。

反碼通常作為求補過程的中間形式,即在一個負數的反碼的未位上加1,就得到了該負數的補碼。

①小數反碼的定義

[x]反=x

0≤x<1

2-2n-1-x-1<

x≤0例如:

x=+0.1011

[x]反=

01011

x=-0.1011

[x]反=

10100

②整數反碼的定義

[x]反=x

0≤x<2n

2n+1-1-x-2n

<x≤0

例1.已知[x]原=10011010,求[x]補。

分析如下:

由[x]原求[x]補的原則是:若機器數為正數,則[x]原=[x]補;若機器數為負數,則該機器數的補碼可對它的原碼(符號位除外)所有位求反,再在未位加1而得到。現給定的機器數為負數,故有[x]補=[x]原十1,即

[x]原=10011010

[x]反=11100101十)1

[x]補=11100110

例2.已知[x]補=11100110,求[x]原。

分析如下:

對於機器數為正數,則[x]原=[x]補

對於機器數為負數,則有[x]原=[[x]補]補

現給定的為負數,故有:

[x]補=11100110

[[x]補]反=10011001十)1

[[x]補]補=10011010=[x]原

麻煩採納,謝謝!

補碼,原碼,反碼什麼的。有什麼作用啊!

3樓:匿名使用者

這三個詞是計算機裡面的內容,下面依次解釋:

原碼:原碼就是早期用來表示數字的一種方式: 一個正數,轉換為二進位制位就是這個正數的原碼。負數的絕對值轉換成二進位制位然後在高位補1就是這個負數的原碼。

舉例:int型別的 3 的原碼是 11b(b表示二進位制位), 在32位機器上佔四個位元組,那麼高位補零就得:

00000000 00000000 00000000 00000011

int型別的 -3 的絕對值的二進位制位就是上面的 11b 後高位補零就得:

10000000 00000000 00000000 00000011

但是原碼有幾個缺點,零分兩種 +0 和 -0 。很奇怪是吧!還有,在進行不同符號的加法運算或者同符號的減法運算的時候,不能直接判斷出結果的正負。

你需要將兩個值的絕對值進行比較,然後進行加減操作 ,最後符號位由絕對值大的決定。於是反碼就產生了。

反碼:正數的反碼就是原碼,負數的反碼等於原碼除符號位以外所有的位取反

舉例:int型別的 3 的反碼是

00000000 00000000 00000000 00000011

和原碼一樣沒什麼可說的

int型別的 -3 的反碼是

11111111 11111111 11111111 11111100

除開符號位,所有位,取反

解決了加減運算的問題,但還是有正負零之分,然後就到補碼了

補碼:正數的補碼與原碼相同,負數的補碼為 其原碼除符號位外所有位取反(得到反碼了),然後最低位加1.

舉例:int型別的 3 的補碼是:

00000000 00000000 00000000 00000011

int型別的 -3 的補碼是

11111111 11111111 1111111 11111101

就是其反碼加1

最後總結:

正數的反碼和補碼都與原碼相同。

負數的反碼為對該數的原碼除符號位外各位取反。

負數的補碼為對該數的原碼除符號位外各位取反,然後在最後一位加1。

二進位制是計算技術中廣泛採用的一種數制。二進位制資料是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。

當前的計算機系統使用的基本上是二進位制系統,資料在計算機中主要是以補碼的形式儲存的。計算機中的二進位制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。

20世紀被稱作第三次科技革命的重要標誌之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的**。其運算模式正是二進位制。

19世紀愛爾蘭邏輯學家喬治布林對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進位制是逢2進位的進位制。0、1是基本算符。

因為它只使用0、1兩個數字符號,非常簡單方便,易於用電子方式實現。

4樓:金牛咲

作用如下:

1、補碼:解決負數加法運算正負零問題,彌補了反碼的不足。

2、原碼:可直觀反映出資料的大小。

3、反碼:解決負數加法運算問題,將減法運算轉換為加法運算,從而簡化運算規則。

擴充套件資料在計算機內,定點數有3種表示法:原碼、反碼和補碼。

所謂原碼就是二進位制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。反碼錶示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。

補碼錶示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。

表示方法:

1、原碼的表示:在數值前直接加一符號位的表示法。

2、反碼的表示:

(1)、正數:正數的反碼與原碼相同。

(2)、負數:負數的反碼,符號位為「1」,數值部分按位取反。

3、補碼的表示:

(1)、正數:正數的補碼和原碼相同。

(2)、負數:負數的補碼則是符號位為「1」。並且,這個「1」既是符號位,也是數值位。數值部分按位取反後再在末位(最低位)加1。也就是「反碼+1」。

5樓:匿名使用者

數值在計

算機中表示形式為機器數,計算機只能識別0和1,使用的是二進位制,而在日常生活中人們使用的是十進位制,"正如亞里士多德早就指出的那樣,今天十進位制的廣泛採用,只不過我們絕大多數人生來具有10個手指頭這個解剖學事實的結果.儘管在歷史上手指計數(5,10進位制)的實踐要比二或三進位制計數出現的晚."(摘自《數學發展史》有空大家可以看看哦~,很有意思的).

為了能方便的與二進位制轉換,就使用了十六進位制(2 4)和八進位制(23).下面進入正題.數值有正負之分,計算機就用一個數的最高位存放符號(0為正,1為負).

這就是機器數的原碼了.假設機器能處理的位數為8.即字長為1byte,原碼能表示數值的範圍為(-127~-0 +0~127)共256個.

有了數值的表示方法就可以對數進行算術運算.但是很快就發現用帶符號位的原碼進行乘除運算時結果正確,而在加減運算的時候就出現了問題,如下: 假設字長為8bits( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 顯然不正確.

因為在兩個整數的加法運算中是沒有問題的,於是就發現問題出現在帶符號位的負數身上,對除符號位外的其餘各位逐位取反就產生了反碼.反碼的取值空間和原碼相同且一一對應. 下面是反碼的減法運算:

( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10 (00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有問題.( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正確問題出現在(+0)和(-0)上,在人們的計算概念中零是沒有正負之分的.(印度人首先將零作為標記並放入運算之中,包含有零號的印度數學和十進位制計數對人類文明的貢獻極大).

於是就引入了補碼概念. 負數的補碼就是對反碼加一,而正數不變,正數的原碼反碼補碼是一樣的.在補碼中用(-128)代替了(-0),所以補碼的表示範圍為:

(-128~0~127)共256個.注意:(-128)沒有相對應的原碼和反碼, (-128) = (10000000) 補碼的加減運算如下:

( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10(00000001)補 + (11111111)補 = (00000000)補 = ( 0 ) 正確( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10(00000001) 補+ (11111110) 補= (11111111)補 = ( -1 ) 正確 所以補碼的設計目的是: ⑴使符號位能與有效值部分一起參加運算,從而簡化運算規則.⑵使減法運算轉換為加法運算,進一步簡化計算機中運算器的線路設計 所有這些轉換都是在計算機的最底層進行的,而在我們使用的彙編、c等其他高階語言中使用的都是原碼。

看了上面這些大家應該對原碼、反碼、補碼有了新的認識了吧!有網友對此做了進一步的總結:本人大致總結一下:

1、在計算機系統中,數值一律用補碼來表示(儲存)。主要原因:使用補碼,可以將符號位和其它位統一處理;同時,減法也可按加法來處理。

另外,兩個用補碼錶示的數相加時,如果最高位(符號位)有進位,則進位被捨棄。2、補碼與原碼的轉換過程幾乎是相同的。數值的補碼錶示也分兩種情況:

(1)正數的補碼:與原碼相同。

例如,+9的補碼是00001001。

(2)負數的補碼:符號位為1,其餘位為該數絕對值的原碼按位取反;然後整個數加1。

例如,-7的補碼:因為是負數,則符號位為「1」,整個為10000111;其餘7位為-7的絕對值+7的原碼0000111按位取反為1111000;再加1,所以-7的補碼是11111001。

已知一個數的補碼,求原碼的操作分兩種情況:

(1)如果補碼的符號位為「0」,表示是一個正數,所以補碼就是該數的原碼。

(2)如果補碼的符號位為「1」,表示是一個負數,求原碼的操作可以是:符號位為1,其餘各位取反,然後再整個數加1。

例如,已知一個補碼為11111001,則原碼是10000111(-7):因為符號位為「1」,表示是一個負數,所以該位不變,仍為「1」;其餘7位1111001取反後為0000110;再加1,所以是10000111。在「閒扯原碼、反碼、補碼」檔案中,沒有提到一個很重要的概念「模」。

我在這裡稍微介紹一下「模」的概念:「模」是指一個計量系統的計數範圍。如時鐘等。

計算機也可以看成一個計量機器,它也有一個計量範圍,即都存在一個「模」。例如:  時鐘的計量範圍是0~11,模=12。

表示n位的計算機計量範圍是0~2(n)-1,模=2(n)。【注:n表示指數】

「模」實質上是計量器產生「溢位」的量,它的值在計量器上表示不出來,計量器上只能表示出模的餘數。任何有模的計量器,均可化減法為加法運算。例如:

假設當前時針指向10點,而準確時間是6點,調整時間可有以下兩種撥法:   一種是倒撥4小時,即:10-4=6    另一種是順撥8小時:

10+8=12+6=6 在以12模的系統中,加8和減4效果是一樣的,因此凡是減4運算,都可以用加8來代替。對「模」而言,8和4互為補數。實際上以12模的系統中,11和1,10和2,9和3,7和5,6和6都有這個特性。

共同的特點是兩者相加等於模。 對於計算機,其概念和方法完全一樣。n位計算機,設n=8, 所能表示的最大數是11111111,若再加1稱為100000000(9位),但因只有8位,最高位1自然丟失。

又回了00000000,所以8位二進位制系統的模為2(8)。 在這樣的系統中減法問題也可以化成加法問題,只需把減數用相應的補數表示就可以了。 把補數用到計算機對數的處理上,就是補碼。

1的原碼,補碼,反碼是什麼,0的原碼 反碼 補碼是什麼?

1 機器數一個數在計算機中的二進位制表示形式,叫做這個數的機器數。機器數是帶符號的,在計算機用一個數的最高位存放符號,正數為0,負數為1.比如,十進位制中的數 3,計算機字長為8位,轉換成二進位制就是00000011。如果是 3,就是 10000011 那麼 1,就是10000001 2.原碼 原碼...

在C語言中,「原碼,反碼和補碼」有什麼不同啊

正數的原碼,反碼和補碼都一樣的,而負數就不一樣了 計算機為了讓所有的數都是進行同一個加法運算,就有了原碼,反碼和補碼的產生 負數的補碼等於它的絕對值的原碼取反後得到這個負數的反碼,而在反碼的基礎上加1就變成了這個負數的補碼了 下面我用8位的來舉例 最高位是符號位 45原碼 00101101 反碼 0...

電腦中的os指的是什麼,電腦中的OS是什麼意思?

1 電腦中os是作業系統 operating system 的簡稱。2 作業系統 operating system,簡稱os 是管理和控制計算機硬體與軟體資源的計算機程式,是直接執行在 裸機 上的最基本的系統軟體,任何其他軟體都必須在作業系統的支援下才能執行。3 個人電腦中所使用的作業系統如wind...