數學符號的意義,數學符號含義

2021-05-05 17:56:37 字數 8320 閱讀 5706

1樓:200912春

γ(  )是伽馬函式的符號,同理還有β(  )是貝塔函式的符號,均屬廣義積分中的內容。

2樓:

γ希臘文第三字母,讀音gama。只是一個數學符號,沒有什麼意義,你說數學符號y什麼意義?你賦給它什麼意義,它就有什麼意義 。你的數學老師沒有教過你嗎?

3樓:匿名使用者

數學符號一般有以下幾種:

(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏。

(2)運算子號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。

(3)關係符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。

(4)結合符號:如圓括號「()」方括號「」,花括號「{}」括線「—」

(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」

(6)省略符號:如三角形(△),正弦(sin),x的函式(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(c ),冪(am),階乘(!)等。

符號 意義

∞ 無窮大

pi 圓周率

|x| 函式的絕對值

∪ 集合並

∩ 集合交

≥ 大於等於

≤ 小於等於

≡ 恆等於或同餘

ln(x) 以e為底的對數

lg(x) 以10為底的對數

floor(x) 上取整函式

ceil(x) 下取整函式

x mod y 求餘數

小數部分 x - floor(x)

∫f(x)δx 不定積分

∫[a:b]f(x)δx a到b的定積分

p為真等於1否則等於0

∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求極限

f(z) f關於z的m階導函式

c(n:m) 組合數,n中取m

p(n:m) 排列數

m|n m整除n

m⊥n m與n互質

a ∈ a a屬於集合a

#a 集合a中的元素個數

回答者:tzzjh - 助理 二級 11-9 10:49

(1)數量符號

(2)運算子號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶)等。

(3)關係符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。

(4)結合符號:如圓括號「()」方括號「」,花括號「{}」括線「—」

(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」

(6)省略符號:如三角形(△),正弦(sin),x的函式(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(c ),冪(am),階乘(!)等。

符號 意義

∞ 無窮大

pi 圓周率

|x| 函式的絕對值

∪ 集合並

∩ 集合交

≥ 大於等於

≤ 小於等於

≡ 恆等於或同餘

ln(x) 以e為底的對數

lg(x) 以10為底的對數

floor(x) 上取整函式

ceil(x) 下取整函式

x mod y 求餘數

小數部分 x - floor(x)

∫f(x)δx 不定積分

∫[a:b]f(x)δx a到b的定積分

p為真等於1否則等於0

∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求極限

f(z) f關於z的m階導函式

c(n:m) 組合數,n中取m

p(n:m) 排列數

m|n m整除n

m⊥n m與n互質

a ∈ a a屬於集合a

#a 集合a中的元素個數

號 意義

∞ 無窮大

pi 圓周率

|x| 函式的絕對值

∪ 集合並

∩ 集合交

≥ 大於等於

≤ 小於等於

≡ 恆等於或同餘

ln(x) 以e為底的對數

lg(x) 以10為底的對數

floor(x) 上取整函式

ceil(x) 下取整函式

x mod y 求餘數

小數部分 x - floor(x)

∫f(x)δx 不定積分

∫[a:b]f(x)δx a到b的定積分

p為真等於1否則等於0

∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求極限

f(z) f關於z的m階導函式

c(n:m) 組合數,n中取m

p(n:m) 排列數

m|n m整除n

m⊥n m與n互質

a ∈ a a屬於集合a

#a 集合a中的元素個數

4樓:匿名使用者

符號,是這個世界上最有魔力的標識。它從來不說話,卻能取得所有人的理解。eyeopener今日話題,神祕符號的趣味歷史。

數學符號含義

5樓:匿名使用者

數學符號大全及意義之運算子號

如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

數學符號大全及意義之關係符號

如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關係),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b 表示「a能整除b」,而 ||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。

數學符號大全及意義之結合符號

如小括號「()」,中括號「」,大括號「{}」,橫線「—」=。

數學符號大全及意義之性質符號

如正號「+」,負號「-」,正負號「 」(以及與之對應使用的負正號「」)

數學符號大全及意義之省略符號

如三角形(△),直角三角形(rt△),正弦(sin)(見三角函式),

雙曲正弦函式(sinh),x的函式(f(x)),極限(lim),角(∠),

∵ 因為(一個腳站著的,站不住)

∴ 所以(兩個腳站著的,能站住)(口訣:因為站不住,所以兩個點;因為上面兩個點,所以下面兩個點)

總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數 (n元素的總個數;r參與選擇的元素個數),冪 等。

數學符號大全及意義之排列組合符號

c 組合數

a (或p) 排列數

n 元素的總個數

r 參與選擇的元素個數

! 階乘,如5!=5×4×3×2×1=120,規定0!=1

!! 半階乘(又稱雙階乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840

數學符號大全及意義之離散數學符號

∀ 全稱量詞

∃存在量詞

├ 斷定符(公式在l中可證)

╞ 滿足符(公式在e上有效,公式在e上可滿

6樓:匿名使用者

&,and,和的關係!

邏輯上表示,兩者缺一不可!

7樓:雖分離卻

and 就是和

數學符號的意義

8樓:冀蔚眾膿

數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現在常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。

有誰知道所有數學符號的意義

9樓:匿名使用者

數學符號一般有以下幾種:

(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏。

(2)運算子號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。

(3)關係符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。

(4)結合符號:如圓括號「()」方括號「」,花括號「{}」括線「—」

(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」

(6)省略符號:如三角形(△),正弦(sin),x的函式(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(c ),冪(am),階乘(!)等。

符號 意義

∞ 無窮大

pi 圓周率

|x| 函式的絕對值

∪ 集合並

∩ 集合交

≥ 大於等於

≤ 小於等於

≡ 恆等於或同餘

ln(x) 以e為底的對數

lg(x) 以10為底的對數

floor(x) 上取整函式

ceil(x) 下取整函式

x mod y 求餘數

小數部分 x - floor(x)

∫f(x)δx 不定積分

∫[a:b]f(x)δx a到b的定積分

p為真等於1否則等於0

∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求極限

f(z) f關於z的m階導函式

c(n:m) 組合數,n中取m

p(n:m) 排列數

m|n m整除n

m⊥n m與n互質

a ∈ a a屬於集合a

#a 集合a中的元素個數

回答者:tzzjh - 助理 二級 11-9 10:49

(1)數量符號

(2)運算子號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶)等。

(3)關係符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。

(4)結合符號:如圓括號「()」方括號「」,花括號「{}」括線「—」

(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」

(6)省略符號:如三角形(△),正弦(sin),x的函式(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(c ),冪(am),階乘(!)等。

符號 意義

∞ 無窮大

pi 圓周率

|x| 函式的絕對值

∪ 集合並

∩ 集合交

≥ 大於等於

≤ 小於等於

≡ 恆等於或同餘

ln(x) 以e為底的對數

lg(x) 以10為底的對數

floor(x) 上取整函式

ceil(x) 下取整函式

x mod y 求餘數

小數部分 x - floor(x)

∫f(x)δx 不定積分

∫[a:b]f(x)δx a到b的定積分

p為真等於1否則等於0

∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求極限

f(z) f關於z的m階導函式

c(n:m) 組合數,n中取m

p(n:m) 排列數

m|n m整除n

m⊥n m與n互質

a ∈ a a屬於集合a

#a 集合a中的元素個數

號 意義

∞ 無窮大

pi 圓周率

|x| 函式的絕對值

∪ 集合並

∩ 集合交

≥ 大於等於

≤ 小於等於

≡ 恆等於或同餘

ln(x) 以e為底的對數

lg(x) 以10為底的對數

floor(x) 上取整函式

ceil(x) 下取整函式

x mod y 求餘數

小數部分 x - floor(x)

∫f(x)δx 不定積分

∫[a:b]f(x)δx a到b的定積分

p為真等於1否則等於0

∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求極限

f(z) f關於z的m階導函式

c(n:m) 組合數,n中取m

p(n:m) 排列數

m|n m整除n

m⊥n m與n互質

a ∈ a a屬於集合a

#a 集合a中的元素個數

數學符號是表示什麼,數學符號「 」含義

是大寫希臘字母delta,在數學中常見用法的有 1 三角形 2 二次函式根的判別式 3 表示變數的增量,如 x,y 4 表示一個小量 5 表示差分 6 在riemann定積分理論中表示一個區間的分割delta是第四個希臘字母的讀音,其大寫為 小寫為 在數學或者物理學中大寫的 用來表示增量符號。而小寫...

數學符號f代表什麼,數學符號 代表的含義

f x 是指關於x的函式,通常有一個定義指明它是如何計算的,和x有什麼關係。例如那些帶有字母x的都可以寫成 f x a1 x n a2 x n 1 an x a n 1或者其他等形式,根式,不等式亦可,一般是等式居多。函式還可以巢狀使用,比如定義 f 0 1,f 1 1,f n f n 1 f n ...

數學符號是什麼這是什麼數學符號?

根號根號的由來 現在,我們都習以為常地使用根號 如 等等 並感到它使用起來既簡明又方便。那麼,根號是怎樣產生和演變成現在這種樣子的呢?古時候,埃及人用記號 表示平方根。印度人在開平方時,在被開方數的前面寫上ka。阿拉伯人用 表示 1840年前後,德國人用一個點 來表示平方根,兩點 表示4次方根,三個...