如圖所示,輕質彈簧的勁度係數為k20Ncm,用其拉著

2021-03-04 05:24:57 字數 2319 閱讀 3947

1樓:匿名使用者

(1)根據胡克定律來得,彈簧自的拉力f=kx,由bai平衡條件得:

滑動du摩擦力:f=f

支援力zhi:fn=g

又f=μ

daofn,聯立代入得到

μ=kx

g=2000×0.04

200=0.4

(2)當彈簧的伸長量增加為6cm時,彈力增加為f=kx=20n/cm×6cm=120n;

由於動摩擦因數μ不變,物體對地面的壓力大小fn不變,則滑動摩擦力f不變,f=μg=80n

(3)突然撤去彈簧物體在水平面繼續滑行,物體受滑動摩擦力,由於壓力不變,故滑動摩擦力不變,為80n;

答:(1)物體與水平面的動摩擦因數為0.4;(2)物體受到的水平拉力有120n,這時物體受到的摩擦力為80n.(3)物體受到的摩擦力仍為80n.

如圖所示,輕質彈簧的勁度係數k=20n/cm,用其拉著一個重為200n的物體在水平面上運動,當彈簧的伸長量為4c

2樓:影

解:(1)根據胡克定律得,彈簧的拉力f=kx,由平衡條件得:

滑動摩擦

版力:f=f

支援力:fn=g

又f=μfn

,聯立權代入得到:

μ=kx

g=2000×0.04

200=0.4

(2)當彈簧的伸長量增加為6cm時,彈力增加為:f=kx=20n/cm×6cm=120n;

由於動摩擦因數μ不變,物體對地面的壓力大小fn不變,則滑動摩擦力f不變,f=μg=80n

(3)撤去彈簧後物體在滑動摩擦力作用下做減速運動,由牛頓第二定律可知:

μmg=ma

a=μg=0.4×10=4m/s2

執行的位移為:s=v20

2a=2×4m=8m

答:(1)物體與水平面間的滑動摩擦係數為0.4

(2)當彈簧的伸長量為6cm時,物體受到的水平拉力有多大?這時物體受的摩擦力有80n

(3)如果在物體運動的過程中突然撤去彈簧物體在水平面繼續滑行,撤去彈簧後物體能在水平面上滑行8m

如圖所示,輕質彈簧的勁度係數k=2000n/m,用其拉著一個重為200n的物體在水平面上運動,當彈簧的伸長量為4

3樓:c在奇蹟

(1)根抄

據胡克定律得,彈簧的拉襲

力f=kx,

由平衡條件bai得

滑動摩擦力f=f

支援力dufn=g

又f=μfn,聯立代入zhi得到

μ=2000×dao0.04

200=0.4

(2)伸長量為6cm時,物體受到的水平拉力f=kx=2000×0.06=120n,由於動摩擦因數μ不變,物體對地面的壓力大小fn不變,則滑動摩擦力f不變,f=μg=80n

(3)突然撤去彈簧物體仍然受到滑動摩擦力80n.答:(1)物體與水平面的動摩擦因數為0.4;

(2)在彈性限度內,當彈簧的伸長量為6cm時,物體受到的摩擦力仍為80n.

(3)突然撤去彈簧物體仍然受到滑動摩擦力80n.

如圖所示,輕質彈簧的勁度係數為200n/m,它水平拉著一個重為20n的物體在水平面上運動,當彈簧的伸長量為4

4樓:匿名使用者

(bai1)根據胡克定律得,彈du簧的拉力f=kx,由平zhi衡條件得

滑動摩擦力daof=f

支援力fn =g

又f=μfn ,聯立代入內得到

μ=kx g

=200×0.04

20=0.4

(2)由

容於動摩擦因數μ不變,物體對地面的壓力大小fn 不變,則滑動摩擦力f不變,f=μg=8n

答:(1)物體與水平面的動摩擦因數為0.4;

(2)在彈性限度內,當彈簧的伸長量為6cm時,物體受到的摩擦力仍為0.8n.

如圖所示,一輕質彈簧的勁度係數為500n/m,用其拉著一個質量為10kg的物體在水平面上運動,當彈簧的伸長量

5樓:手機使用者

(1)根據胡克定律得,彈簧的拉力f=kx;

由平衡條件,滑動摩擦力:f=f;

支援力fn=g

又f=μfn

聯立代入得到:

μ=kx

g=500×0.04

100=0.2

(2)由於動摩擦因數μ不變,物體對地面的壓力大小fn不變,則滑動摩擦力f不變,f=μg=20n

答:(1)物體與水平面的動摩擦因數為0.2;

(2)在彈性限度內,當彈簧的伸長量為6cm時,物體受到的摩擦力仍為20n.

如圖所示,一勁度係數k 800 N m的輕彈簧的兩端各焊接著

解 來1 a原來靜止時有 kx1 mg 源當物體a剛開始做勻加速運 bai動時,拉力 duf最小,設為f1 對物zhi體a有 f1 daokx1 解得 a 3.75 m s2 2003?順德區模擬 一個勁度係數為k 800n m的輕彈簧,兩端分別連線著質量均為m 12kg物體a和b,將它們豎 1 開...

如圖所示,質量為m的物體放在彈簧上,與彈簧一起在豎直方向上做

1 在最 低點物體對彈簧的彈力最大,由牛頓第二定律得 fn1 mg ma在最高回點物體對彈簧的彈力答最小,由簡諧運動的對稱性可知 mg fn2 ma 聯立解得 fn2 0.5mg 2 物體在平衡位置下方處於超重狀態,不可能離開彈簧,只有在平衡位置上方可能離開彈簧 要使物體在振動過程中恰好不離開彈簧,...

如圖所示,質量為M的木板可沿傾角為的光滑斜面下滑,木板上站著質量為m的人,問

1 m m g sin a m為了保持木板與斜面相對靜止,木板受人的磨擦力大小就等於木板重力沿斜面方向的分解力mg sin a,方向沿斜面向上。同時人受相同大小的磨擦力,方向相反,並同時受自身重力沿斜面方向的分解力mg sin a,人在垂直斜面方向受到的合力為0,在沿斜面方向上受到沿斜面向下的合力為...