1樓:_深__藍
導數是函式影象在某一點處的斜率,是縱座標增量(δy)和橫座標增量(δx)在δx-->0時的比值。而微分是指函式影象在某一點處的切線在橫座標取得增量δx以後,縱座標取得的增量,一般表示為dy。
積分是微分的逆運算,即知道了函式的導函式,反求原函式。積分被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。
微分,積分,導數推導過程:
設函式y = f(x)在x的鄰域內有定義,x及x + δx在此區間內。如果函式的增量δy = f(x + δx) - f(x)可表示為 δy = aδx + o(δx)(其中a是不不隨δx改變的常量,但a可以隨x改變),而o(δx)是比δx高階的無窮小。
那麼稱函式f(x)在點x是可微的,且aδx稱作函式在點x相應於因變數增量δy的微分,記作dy,即dy = aδx。函式的微分是函式增量的主要部分,且是δx的線性函式,故說函式的微分是函式增量的線性主部(△x→0)。
設函式y = f(x)在某區間內有定義,x0及x0+△x在這區間內,若函式的增量δy = f(x0 + δx) − f(x0)可表示為δy = aδx + o(δx),其中a是不依賴於△x的常數, o(δx)是△x的高階無窮小,則稱函式y = f(x)在點x0是可微的。 aδx叫做函式在點x0相應於自變數增量△x的微分。
2樓:匿名使用者
簡單的理解,導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分是求原函式,可以形象理解為是函式導數的逆運算。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx,而其導數則為:y'=f'(x)。
設f(x)為函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。
3樓:北極雪
1、歷史發展不同:微分的歷史比積分悠久。希臘時期,人類討論「無窮」、「極限」以及「無窮分割」等概念是微分的**基礎。
而積分是由德國數學家波恩哈德·黎曼於19世紀提出的概念。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。2、數學表達不同:
微分:導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分:
設f(x)為函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。3、幾何意義不同:
微分:設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲線在點m的切線對應δx在縱座標上的增量。幾何意義是將線段無線縮小來近似代替曲線段。
積分:實際操作中可以用粗略的方式進行估算一些未知量,但隨著科技的發展,很多時候需要知道精確的數值。要求簡單幾何形體的面積或體積,可以套用已知的公式。
比如一個長方體狀的游泳池的容積可以用長×寬×高求出。4、實際應用不同:微分和積分是相反的一對運算。
微分是求變化率,積分是求變化總量。比如,求加速度,就是用微分,即對速度進行求導,如果是求路程,就是對速度在某個時間段內進行積分。
4樓:燦燦
導數是函式切線的斜率,微分是函式的切線的函式,然後積分就是原來的函式。
求導是方法是原理,可以有很多種實現方法,也即每個地方可以有不同的斜率,是一堆斜率集。 微分是具體加工,就是對某一處進行例項化,是具體某一個斜率結果。 積分是傢俱部件相當於斜率的切點,這一堆切點就組成回原來的函式即是傢俱。
5樓:匿名使用者
導數:如果是在某點處
的導數的話,那導數有幾何意思,那就是在該點處的切線的斜率。如果是函式和導數,就是因變數y對自變數x的變化率。結合後面的微分知識知道,導數其實是微商,即因變數的增量與自變數的增量的比值的極限,寫成公式就是f'(x)=dy/dx,
微分:如果函式在某點處的增量可以表示成
△y=a△x+o(△x) (o(△x)是△x的高階無窮小)
且a是一個與△x無關的常數的話,那麼這個a△x就叫做函式在這點處的微分,用dy表示,即dy=a△x
△y=a△x+o(△x),兩邊同除△x有
△y/△x=a+o(△x)/△x,再取△x趨於0的極限有
lim△y/△x=lim[a+o(△x)/△x]=lima+lim[o(△x)/△x]=a+0
f'(x)=lim△y/△x=a
所以這裡就揭示出了,導數與微分之間的關係了,
某點處的微分:dy=f'(x)△x
通常我們又把△x叫自變數的微分,用dx表示 所以就有
dy=f'(x)dx.證明出了微分與導數的關係
正因為f'(x)=dy/dx,所以導數也叫做微商(兩個微分的商)
不定積分:求積分的過程,與求導的過程正好是逆過程,好加與減,乘與除的關係差不多。求一個函式f(x)的不定積分,就是要求出一個原函式f(x),使得f'(x)=f(x),
而f(x)+c(c為任意常數)就是不定積分∫f'(x)dx的所有原函式,
不定積分其實就是這個表示式:∫f'(x)dx
定積分與不定積分的區別是,定積分有上下限,∫(a,b)f'(x)dx
而不定積分是沒有上下限的,因而不定積分的結果往往是個函式,定積分的結果則是個常數,這點對解積分方程有一定的幫助。
6樓:門板
微積分的發展歷史,先有積分後有導數,最後才有極限
導數,微分,積分之間有什麼聯絡和區別
7樓:匿名使用者
簡單的理解,導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分是求原函式,可以形象理解為是函式導數的逆運算。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx,而其導數則為:y'=f'(x)。
設f(x)為函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。
8樓:牙牙啊
導數、微分和積分都是一種運演算法則,和加減乘除是一個型別。當年牛頓搞的是導數,和積分。萊布尼茲從另一個角度也搞了研究,他是從微分的角度出發的,來搞微分和積分的。
雖然出發點不一樣,但導數和微分,二者在本質上是一樣的。僅僅表示形式不同。積分是導數(也是微分)的逆運算。
導數導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。 導數是函式的區域性性質。
一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函式進行區域性的線性逼近。
例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。 不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。
然而,可導的函式一定連續;不連續的函式一定不可導。
對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。
反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
9樓:華山論劍部落格
微分:無限小塊的增量可以看作是變化率,也就是導數。
積分:無限小塊的面積和可以看作是整個面積。
10樓:匿名使用者
微分是什麼,微分導數教學,帶你弄懂微積分導數的整體邏輯!
11樓:愛作你的兔子
可導必連續,閉區間上連續一定可積,可積一定有界
微分和導數是什麼關係?
12樓:匿名使用者
一元函式中可導與可微等價。導數是函式影象在某一點處的斜率,是縱座標增量(δy)和橫座標增量(δx)在δx-->0時的比值。
微分的定義:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。微分是函式改變數的線性主要部分。
微積分的基本概念之一。
擴充套件資料
微分概念在整個微積分體系中佔有重要地位。理解微分概念是微積分教育的重要環節。在歷史上,微分的定義經歷了很長時間的發展。
牛頓、萊布尼茲是微積分的主要建立人,他們的微積分可以稱為第一代微積分,第一代微積分的方法是沒有問題的,而且獲得了巨大的成功,但是對微分的定義(即微分的本質到底是什麼)的說明不夠清楚。
以柯西、維爾斯特拉斯等為代表的數學家在極限理論的基礎上建立了微積分原理,可以稱之為第二代微積分,並構成當前教學中微積分教材的主要內容。
第二代微積分與第一代微積分在具體計算方法上基本相同,第二代微積分表面上解決了微分定義的說明,但是概念和推理繁瑣迂迴。
13樓:518姚峰峰
(1)起源(定義)不同:導數起源是函式值隨自變數增量的變化率,即△y/△x的極限.微分起源於微量分析,如△y可分解成a△x與o(△x)兩部分之和,其線性主部稱微分.
當△x很小時,△y的數值大小主要由微分a△x決定,而o(△x)對其大小的影響是很小的.
(2)幾何意義不同:導數的值是該點處切線的斜率,微分的值是沿切線方向上縱座標的增量,而△y則是沿曲線方向上縱座標的增量.可參考任何一本教材的圖形理解.
(3)聯絡:導數是微分之商(微商)y' =dy/dx,微分dy=f'(x)dx,這裡公式本身也體現了它們的區別.
(4)關係:對一元函式而言,可導必可微,可微必可導.
微分和積分的基本原理是什麼,微分,積分和導數是什麼關係
微分和積分就是微積分!不定積分是積分的陸昌猛反運算,而定積分則是對曲早橋邊梯形的面積描述。說白了微分就是積迅世分的基礎。微積分學是微分學和積分學敗殲正的總稱。它是一種數學思想,無限細分 就是微分,無限求察悔和 改胡就是積分。無限就是極限,極限的思想是微積分的基礎 不用要什麼原理多做幾個題就行了 就是...
多元複合函式求偏導數和全微分有什麼技巧 口訣或者規律嗎?老是出錯怎麼辦
不要直接求導求偏導,用微分定義先求微分,再解微商。比如z f x y y exp ax 求微分得到 dz 2f x y xdx ydy dy aexp ax dx 求完微分後,1式令dy 0解出微商dz dx即得z對x偏導 2式代入1式消去dy解出微商dz dx即得y exp ax 時z對x的導數。...
數學全導數與全微分的區別是什麼?如何判別
1 含義上的區別 全導數 設z是u v的二元函式z f u,v u v是x的一元函式u u x v v x z通過中間變數u v構成自變數x的複合函式。這種兩個中間變數 一個自變數的多元複合函式是一元函式,其導數稱為全導數。全微分 表示式dz fx x,y x fy x,y y,稱為函式z f x,...