最小的自然數是幾,最大的自然數是幾

2021-03-06 23:49:04 字數 2538 閱讀 5215

1樓:

最小的自然數是0,自然數就是非負整數, 即用數碼0,1,2,3,4,5,……所表示的數,也就是除負整數外的所有整數,通常也被稱為自然數。

沒有最大的自然數,自然數是非負整數也就是0和正整數

最小的自然數是0

思考之一:為什麼要把0劃歸自然數。

從歷史上看,國內外數學界對於0是不是自然數歷來有兩種觀點:一種認為0是自然數,另一種認為0不是自然數。建國以來,我國的中小學教材一直規定自然數不包括0。

目前,國外的數學界大部分都規定0是自然數。為了方便於國際交流,2023年頒佈的《中華人民共和國國家標準》(gb 3100-3102-93)《量和單位》(11-2.9)第311頁,規定自然數包括0。

所以在近幾年進行的中小學數學教材修訂中,教材研究編寫人員根據上述國家標準進行了修改。即一個物體也沒有,用0表示。0也是自然數。

思考之二:最小的一位數是「1」還是「0」?

0是最小的自然數,那麼最小的一位數是「1」還是「0」?在0沒有歸入自然數以前大家都很清楚,最小的一位數是1。那麼,現在0也成為自然數了,最小的一位數還是1嗎?

這是許多教師提出的疑問,筆者認為最小的一位數還是1。

因為,0表示一個物體也沒有,在記數法中是表示空位的一個符號,如3005裡「0」就分別表示這個數的十位、百位、都是空位。這次調整雖然將「0」劃歸自然數,然而對幾位數的概念並沒改變。關於「幾位數」是這樣定義的「只用一個有效數字表示的數,叫做一位數,只用兩個有效數字,其中左邊第一個數字是有效數字來表示的數就叫做兩位數……」假設0也算作一位數的話,那麼最小的兩位數是「10」還是「00」呢?

那麼最小的三位數、四位數……又是多少呢?

《九年義務教育六年制小學數學第八冊教師教學用書》第98頁「關於幾位數」是這樣敘述的:「通常在自然數裡,含有幾個數位的數,叫做幾位數。例如,2,含有一個數位的數,叫做一位數;30含有兩個數位的數,叫做兩位數;405含有三個數位的數,叫做三位數……但是要注意:

一般不說0是幾位數。

所謂最大的幾位數,最小的幾位數,通常也是在非零自然數有範圍來說。所以,最大一位數是9,最小一位數是1;最大兩位數是99,最小兩位數是10;最大三位數是999,最小三位數是100……」

綜上所述,「0」雖然是最小的自然數,但仍然不能稱為「一位數」,更不能稱為最小的一位數。

思考之三:自然數的計數單位還是「1」嗎?

大家都知道,0是自然數中最小的一個。0加1得1,1加1得2 ,2加1得3,……這樣繼續下去可以得到任意一個自然數。而從自然數的排列順序可知,後面一個自然數比前面一個自然數多1。

因此,任何一個自然數都是由若干個1合併而成,所以1是自然數的單位。0可以看成是由0個1組成的自然數。

思考之四:0是其它非零自然數的倍數嗎?

《九年義務教育六年制小學數學》第十冊中,關於「數的整除」及「約數和倍數」的定義並未做任何改變,教材第54頁就有這樣的敘述:「因為0也能被2整除,所以0也是偶數」。以此類推,0能被所有非零自然數整除,根據約數倍數的定義,0是任何非零自然數的倍數,任何非零自然數都是0的約數。

但考慮到研究分解質因數、最大公約數、最小公倍數時,一般限於非零自然數範圍內,如講最小公倍數時,是把0排除在外的。為此,《九年義務教育六年制小學數學》第十冊50頁明確指出:「為了方便,以後在研究約數和倍數時,我們所說的數一般不包括0」。

這樣就避免了一些不必要的麻煩。但過去的一些說法就必須加以糾正了。例如:

「一個自然數的最小倍數是它本身」、「自然數的約數的個數是有限的」等,這樣的結論必須糾正。

思考之五:0是不是合數?

過去,在教學中,關於自然數的組成,有兩種情況:一是所有奇數和所有的偶陣列成自然數集合;二是所有的質數與所有的合數及1也組成自然數集合。現在0也成為了自然數集合的一員,因而有許多教師提出這樣的問題:

0是不是合數?

前面已經談過了,以後「在研究約數和倍數時,我們所說的數一般不包括0」,但作為一種學術研究,進行**也未嘗不可。筆者以為,0的約數有無數個,根據《九年義務教育六年制小學數學》第十冊中關於合數的定義:「一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。

」似乎應該把0劃歸為合數範圍,但仔細一想0是個特殊的自然數,因為所有非零自然數都有「本身」這個約數,如,1是1的約數,2也是2的約數……,而0這個自然數恰恰少了「本身」這個約數,因此,也不能歸為合數。試想:假設如果0是合數,那麼它能用質因數相乘的形式表現出來嗎?

這就與「每個合數都可以寫成幾個質數相乘的形式」產生了矛盾。所以,我主張把0劃歸為「既不質數,也不是合數」範圍。當然了,這需要權威機構和專家們的認定。

但我認為,目前在沒有明確0是不是合數的情況下,還是以迴避為好。

思考之六:「任何相鄰的兩個自然數是互質數」對嗎?

0沒有成為自然數時,這一結論毫無疑問是正確的。現在0也是自然數,我們只要研究「0和1」這兩個相鄰的自然數是不是質數,就行了。根據《九年義務教育六年制小學數學》第十冊中關於互質數的定義:

「公約數只有1的兩個數,叫做互質數。」筆者認為,0的約數有無數個,而1的約數只有一個,那就是它本身。綜上所述,0和1的公約數只有「1」,因此,0和1是互質數。

自然,「任何相鄰的兩個自然數是互質數」這個結論也是正確的。

2樓:匿名使用者

最小的自然數是0,沒有最大的自然數。

最小自然數是幾,自然數的個數是幾

最小自然數是0,自然數的個數是無窮的。最小自然數0,個數無數。最小自然數是1。無數個。最小的自然數是幾,最大的自然數是幾?最小的自然數是0,沒有最大的自然數。最小的自然數是幾?0是最小的自然數。自然數用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,所表示的數。表示物體個數的數叫自然...

最小的自然數是幾,自然數都有哪些 最小的自然數是幾

依現在數學課本的定義,自然數由0,1,2,3 組成,最小的自然數是0.自然數從0開始還是從1開始飽受爭議。從數論上來講,自然數從1開始,在集合論中,自然數從0開始。我國中小學教材中自然數是從0開始,新華字典 中自然數是從1開始。可以指正整數或非負整數,在數論通常用前者,而集合論和電腦科學則多數使用後...

0是自然數嗎,自然數的定義是什麼?0是自然數嗎?

0的產生是人類數學研究史上的一個偉大進步,數學逐步演變到現在,0的存在卻讓很多的家長和孩子頭疼。阿拉伯數字共有十個 1 2 3 4 5 6 7 8 9 0。在當下的中小學教科書中,一個物體也沒有,就用0表示。0是最小的自然數。0還有佔數位的作用。表示該數位上一個計數單位也沒的。那麼,0 是不是最小的...