1樓:少爺的磨難
0的產生是人類數學研究史上的一個偉大進步,數學逐步演變到現在,0的存在卻讓很多的家長和孩子頭疼。
阿拉伯數字共有十個:1、2、3、4、5、6、7、8、9、0。
在當下的中小學教科書中,一個物體也沒有,就用0表示。0是最小的自然數。
0還有佔數位的作用。表示該數位上一個計數單位也沒的。
那麼,"0"是不是最小的一位數?
記數法裡有個規定:一個數的最高位不能是0。
為什麼要這樣規定呢?
因為若沒有這樣的規定,如果0是一位數,那麼可以得出最小的兩位數是00,最小的三位數是000,這樣的結論顯然是不對的。
不僅這樣,若沒有這樣的規定,對一個數也就無法確定它是幾位數了。例如,15是兩位數,「015」就變成了三位數,「0015」就變成了四位數。
這樣,同一個數我們可以隨意稱它為幾位數,「位數」這一概念的存在也就沒有必要了。因此,一個數的最高位不能「0」。
也就是說,所以一位數共有九個,即:1、2、3、4、5、6、7、8、9,最小的一位數是1,而不是0。
2樓:老馬揚蹄
按最新的高中教材0不是自然數。
自然數的定義是什麼?0是自然數嗎?
3樓:
自然數用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,……所表示的數。表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。
自然數有有序性,無限性。分為偶數和奇數,合數和質數等。
分類按是否是偶數分,可分為奇數和偶數。
1、奇數:不能被2整除的數叫奇數。
2、偶數:能被2整除的數叫偶數。也就是說,除了奇數,就是偶數
注:0是偶數。(2023年國際數學協會規定,零為偶數.我國2023年也規定零為偶數。偶數可以被2整除,0照樣可以,只不過得數依然是0而已)。
按因數個數分,可分為質數、合數、1和0。
1、質 數:只有1和它本身這兩個因數的自然數叫做質數。也稱作素數。
2、合 數:除了1和它本身還有其它的因數的自然數叫做合數。
3、1,只有1個因數。它既不是質數也不是合數。
4、當然0不能計算因數,和1一樣,也不是質數也不是合數。
擴充套件資料
整數(integer)就是像-3,-2,-1,0,1,2,3,10等這樣的數。整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。
-1、-2、-3、…、-n、…(n為非零自然數)為負整數。則正整數、零與負整數構成整數系。整數不包括小數、分數。
有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角座標系、函式、統計等數學內容以及相關學科知識的基礎。數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。
0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。
實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。
實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成複數。
4樓:匿名使用者
用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,……所表示的數 。表示物體個數的數叫自然數。
自然數由0開始(包括0)。
5樓:萌娃的霸霸
o是自然數,自然數就是表示物體個數的數!一個接一個,0當然可以作為個數!
6樓:匿名使用者
自然數就是非負整數,0 1 2 3 4 5 6 ...這些就是自然數。-1,0.1這些都不是。
0是自然數
7樓:恕我難以從命
自然數用以計量事物的件數或表示事物次序的數,0是自然數
8樓:請叫我邢老師
自然數是什麼?0為什麼是自然數?看完你就知道了。
9樓:暴力胖佛
自然數就是表示個數的,0也是自然數,表示沒有。
10樓:
0是自然數,自然數是指整數或數碼
11樓:冰淇淋
是有理數,都是整數,如:-9,-12122,0,1,9,7894,1654,5....等
0是自然數
12樓:匿名使用者
0以及正整數都是自然數
13樓:飛吧野子
電飯鍋熱騰騰如何唐突
0是自然數嗎
14樓:匿名使用者
這是專家的發言:
《0是自然數 最小的一位數是1》
隨著九年義務教育小學數學教材(試用修訂版),把0劃歸自然數後,一些數的概念是否發生變化,引起小學了數學教師的關注。無論是在日常的教研活動,還是教師私下交流,或是因特網上的教育論壇,都有許多教師提出疑問,引發了大家的思考。
思考之一:為什麼要把0劃歸自然數
從歷史上看,國內外數學界對於0是不是自然數歷來有兩種觀點:一種認為0是自然數,另一種認為0不是自然數。建國以來,我國的中小學教材一直規定自然數不包括0。
目前,國外的數學界大部分都規定0是自然數。為了方便於國際交流,2023年頒佈的《中華人民共和國國家標準》(gb 3100-3102-93)《量和單位》(11-2.9)第311頁,規定自然數包括0。
所以在近幾年進行的中小學數學教材修訂中,教材研究編寫人員根據上述國家標準進行了修改。即一個物體也沒有,用0表示。0也是自然數。
思考之二:最小的一位數是「1」還是「0」?
0是最小的自然數,那麼最小的一位數是「1」還是「0」?在0沒有歸入自然數以前大家都很清楚,最小的一位數是1。那麼,現在0也成為自然數了,最小的一位數還是1嗎?
這是許多教師提出的疑問,筆者認為最小的一位數還是1。
因為,0表示一個物體也沒有,在記數法中是表示空位的一個符號,如3005裡「0」就分別表示這個數的十位、百位、都是空位。這次調整雖然將「0」劃歸自然數,然而對幾位數的概念並沒改變。關於「幾位數」是這樣定義的「只用一個有效數字表示的數,叫做一位數,只用兩個有效數字,其中左邊第一個數字是有效數字來表示的數就叫做兩位數……」假設0也算作一位數的話,那麼最小的兩位數是「10」還是「00」呢?
那麼最小的三位數、四位數……又是多少呢?
《九年義務教育六年制小學數學第八冊教師教學用書》第98頁「關於幾位數」是這樣敘述的:「通常在自然數裡,含有幾個數位的數,叫做幾位數。例如,2,含有一個數位的數,叫做一位數;30含有兩個數位的數,叫做兩位數;405含有三個數位的數,叫做三位數……但是要注意:
一般不說0是幾位數。
所謂最大的幾位數,最小的幾位數,通常也是在非零自然數有範圍來說。所以,最大一位數是9,最小一位數是1;最大兩位數是99,最小兩位數是10;最大三位數是999,最小三位數是100……」
綜上所述,「0」雖然是最小的自然數,但仍然不能稱為「一位數」,更不能稱為最小的一位數。
思考之三:自然數的計數單位還是「1」嗎?
大家都知道,0是自然數中最小的一個。0加1得1,1加1得2 ,2加1得3,……這樣繼續下去可以得到任意一個自然數。而從自然數的排列順序可知,後面一個自然數比前面一個自然數多1。
因此,任何一個自然數都是由若干個1合併而成,所以1是自然數的單位。0可以看成是由0個1組成的自然數。
思考之四:0是其它非零自然數的倍數嗎?
《九年義務教育六年制小學數學》第十冊中,關於「數的整除」及「約數和倍數」的定義並未做任何改變,教材第54頁就有這樣的敘述:「因為0也能被2整除,所以0也是偶數」。以此類推,0能被所有非零自然數整除,根據約數倍數的定義,0是任何非零自然數的倍數,任何非零自然數都是0的約數。
但考慮到研究分解質因數、最大公約數、最小公倍數時,一般限於非零自然數範圍內,如講最小公倍數時,是把0排除在外的。為此,《九年義務教育六年制小學數學》第十冊50頁明確指出:「為了方便,以後在研究約數和倍數時,我們所說的數一般不包括0」。
這樣就避免了一些不必要的麻煩。但過去的一些說法就必須加以糾正了。例如:
「一個自然數的最小倍數是它本身」、「自然數的約數的個數是有限的」等,這樣的結論必須糾正。
思考之五:0是不是合數?
過去,在教學中,關於自然數的組成,有兩種情況:一是所有奇數和所有的偶陣列成自然數集合;二是所有的質數與所有的合數及1也組成自然數集合。現在0也成為了自然數集合的一員,因而有許多教師提出這樣的問題:
0是不是合數?
前面已經談過了,以後「在研究約數和倍數時,我們所說的數一般不包括0」,但作為一種學術研究,進行**也未嘗不可。筆者以為,0的約數有無數個,根據《九年義務教育六年制小學數學》第十冊中關於合數的定義:「一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。
」似乎應該把0劃歸為合數範圍,但仔細一想0是個特殊的自然數,因為所有非零自然數都有「本身」這個約數,如,1是1的約數,2也是2的約數……,而0這個自然數恰恰少了「本身」這個約數,因此,也不能歸為合數。試想:假設如果0是合數,那麼它能用質因數相乘的形式表現出來嗎?
這就與「每個合數都可以寫成幾個質數相乘的形式」產生了矛盾。所以,我主張把0劃歸為「既不質數,也不是合數」範圍。當然了,這需要權威機構和專家們的認定。
但我認為,目前在沒有明確0是不是合數的情況下,還是以迴避為好。
思考之六:「任何相鄰的兩個自然數是互質數」對嗎?
0沒有成為自然數時,這一結論毫無疑問是正確的。現在0也是自然數,我們只要研究「0和1」這兩個相鄰的自然數是不是質數,就行了。根據《九年義務教育六年制小學數學》第十冊中關於互質數的定義:
「公約數只有1的兩個數,叫做互質數。」筆者認為,0的約數有無數個,而1的約數只有一個,那就是它本身。綜上所述,0和1的公約數只有「1」,因此,0和1是互質數。
自然,「任何相鄰的兩個自然數是互質數」這個結論也是正確的。
15樓:這是邢勇的號
自然數是什麼?0為什麼是自然數?看完你就知道了。
16樓:匿名使用者
隨著九年義務教育小
學數學教材(試用修訂版)的陸續使用,我們接到一些小學數學教師、家長和學生的來信、來電,詢問0是否是自然數的問題。現予以解答如下:
從歷史上看,國內外數學界對於0是不是自然數歷來有兩種觀點:一種認為0是自然數,另一種認為0不是自然數。建國以來,我國的中小學教材一直規定自然數不包括0。
目前,國外的數學界大部分都規定0是自然數。為了國際交流的方便,2023年頒佈的《中華人民共和國國家標準》(gb 3100~3102-93)《量和單位》(11-2.9)第311頁,規定自然數包括0。
所以在近幾年進行的中小學數學教材修訂中,我們的教材研究編寫人員根據上述國家標準進行了修改。即一個物體也沒有,用0表示。0也是自然數。
但是,在小學階段的「整除」部分,仍然不考慮自然數0,因而在約數、倍數等概念中都不包括0。另外,一般情況下我們不說數0是幾位數,所以最小的一位數是1。
自然數的定義自然數的定義是什麼?
自然數用以計量事物的件數或表示事物次序的數 即用數碼0,1,2,3,4,所表示的數。表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。自然數有有序性,無限性。分為偶數和奇數,合數和質數等。分類 按是否是偶數分,可分為奇數和偶數。1 第一類奇數 不能被2整除的數叫奇數。2 第二...
自然數包括零嗎,自然數包括0嗎
是自然數 隨著九年義務教育小學數學教材 試用修訂版 的陸續使用,我們接到一些小學數學教師 家長和學生的來信 來電,詢問0是否是自然數的問題。現予以解答如下 從歷史上看,國內外數學界對於0是不是自然數歷來有兩種觀點 一種認為0是自然數,另一種認為0不是自然數。建國以來,我國的中小學教材一直規定自然數不...
0是不是自然數?要權威答案,0是自然數嗎
0是自然數。自然數用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,所表示的數。表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。自然數有有序性,無限性。分為偶數和奇數,合數和質數等。自然數是一切等價有限集合共同特徵的標記。注 整數包括自然數,所以自然數一定是...