點斜式,斜截式,截距式,兩點式,一般式,引數式方程的區別與局

2021-03-07 00:13:37 字數 4714 閱讀 6746

1樓:牟金生墨溪

1:一般式:ax+by+c=0(a、b不同時為0)【適用於所有直線】a1/a2=b1/b2≠c1/c2←→兩直線平行a1/a2=b1/b2=c1/c2←→兩直線重合橫截距a=-c/a

縱截距b=-c/b

2:點斜式:y-y0=k(x-x0)

【適用於不垂直於x軸的直線】

表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1【適用於不過原點或不垂直於x軸、y軸的直線】

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線4:斜截式:y=kx+b【適用於不垂直於x軸的直線】表示斜率為k且y軸截距為b的直線

5:兩點式:【適用於不垂直於x軸、y軸的直線】表示過(x1,y1)和(x2,y2)的直線兩點式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

2樓:匿名使用者

好的lz

點斜式方程y-y1=k(x-x1),必須滿足斜率存在,斜率不存在時這個方程無法列出

斜截式方程y=kx+b,同樣必須滿足斜率存在,斜率不存在時需要另外討論

截距式方程x/a + y/b =1,這個方程除開必須保證斜率存在,還必須保證斜率k≠0,a≠0,b≠0

兩點式方程(y-y1)/(y1-y2)=(x-x1)/(x1-x2),這個方程同樣需斜率存在且不為0

一般式 ax+by+c=0 這個方程可以適用任何直線,沒有限制,但是解題如果撞上用一般式來求直線的情形,100%是代入求解二元一次方程組,計算量最大

直線的引數方程式

x=x1+t

y=y1+kt

t是直線上一點p,與(x1,y1)形成有向線段的數量

一般也可以做

x=x1+at

y=y1+bt (k=b/a)

顯然,限制條件也是k必須存在

直線的兩點式,點斜式,截距式,斜截式,一般式方程的區別。

3樓:實臻包焱

斜截式:已知直線bai在x軸,y軸上du的截距分別為a,b且zhia.b不相等。

點斜dao式:過點(x1,y1)且直版線的斜率為k.範圍:直權線不垂直x軸。

兩點式:已知直線過(x1,y1,(x2,y2)兩點且x1不等於x2,y1兩點式不等於y2.

範圍:不垂直x,y軸。

截距式:已知直線在x軸y軸的截距分別為a,b,a不等於b。

點斜式,斜截式,兩點式,截距式,一般式,這五個公式是用來求什麼的? 20

4樓:郭敦顒

郭敦顒回答:

是表達直線方程的。

直線的點斜式方程:y-y1=k(x-x1),k——斜率,直線l過點p(x1,y1);

直線的斜截式方程:y=kx+b,k——斜率,直線l在y軸上的截距;

直線的兩點式方程:(y-y1)/(x-x1)=(y1-y2)/(x1-x2),直線l過兩點p1(x1,y1)和p2(x2,y2);

直線的截距式方程:x/a=y/b=1,直線l過點a(a,0)和b(0,b),a,b≠0;

直線的一般式方程:ax+by+c=0,a或b可為0,但不可同時為0。

各直線方程可相互轉化,又多轉化為直線的斜截式方程y=kx+b。

直線的斜截式方程y=kx+b,又表達為關於y與x的函式式,稱為直線函式。

5樓:匿名使用者

你仔細看一下它的命名其實就是它的兩已知條件.求出直線方程.比如點斜式,就是已知一個點的座標和斜率,則用點斜式求出直線方程,後面幾種都是相類同的.仔細想想就明白了.

斜截式,點斜式,兩點式,截距式,一般式的方程

6樓:匿名使用者

點斜式:已知直線過(x0,y0),斜率是k, 則直線方程為:y-y0=k(x-x0) 它只適合直線的斜率存在的情形。

點向式:已知直線過(x0,y0)方向向量v=(a,b), 則直線方程為:b(x-x0)=a(y-y0) 斜截式:

已知直線的斜率為k, 在y軸上的截矩是b, 則直線方程為:y=kx+b 它只適合直線的斜率存在的情形。 兩點式方程:

已知直線過兩點(x1,y1)(x2,y2) 若x1與x2不相同時,則直線方程是: y-y1=(y1-y2)/(x1-x2)*(x-x1) 若x1=x2時,則直線方程是:x=x1 直線的一般方程是:

ax+by+c=0 圓的標準方程是:(x-x0)^2+(y-y0)^2=r^2, 圓心是:(x0,y0), 半徑是r.

圓的一般方程是:x^2+y^2+dx+ey+f=0其中(d^2+e^2-4f>0)

7樓:鍾影南門弘大

點斜式:y-y0=k(x-x0)

斜截式:y=kx+b

兩點式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)截距式:x/a+y/b=1

一般式:ax+by+c=0

點斜式,斜截式,兩點式,截距式,一般式 都什麼時候用?

8樓:真的陳振

1:點斜式:知道一個斜率

知道一個點座標 ,公式是:y-y1=k(x-x1);

2:斜截式:知道一個斜率(通常用字母k表示),還知道一個縱座標(通常用字母b表示),公式是:y=kx+b;

3:截距式:分別知道一個橫、縱座標(橫座標一般用a表示,縱座標一般用b表示),公式是:x\a+y\b=1;

4:兩點式:知道兩個座標p1(x1,y1) p2(x2,y2) 公式是:y-y1/y2-y1=x-x1/x2-x1(現在的教材裡把兩點式已經刪掉了)

5:一般式:ax+by+c=0(a.b不同時為0)

9樓:平安富貴

知道一點座標 點斜式,,兩點式,一般式知道倆點座標 兩點式

知道斜率 點斜式,斜截式,兩點式,截距式,一般式

具體要看求什麼

直線的點斜式、截距式、斜截式、一般式方程公式分別是啥

10樓:喵喵喵

1、點斜式

幾何條件是過點(x0,y0),斜率為k ;方程為y-y0=k(x-x0) ;侷限性是不含垂直於x軸的直線。

2、斜截式

幾何條件是斜率為k,縱截距為b ;方程為y=kx+b;侷限性是不含垂直於x軸的直線。

3、兩點式

幾何條件是過兩點(x1,y1),(x2,y2),(x1≠x2,y1≠y2);方程為(y-y1)/(y2-y1)=(x-x1)(x2-x1);侷限性是不包括垂直於座標軸的直線。

4、截距式

幾何條件是在x軸、y軸上的截距分別為a,b(a,b≠0);方程為x/a+y/b =1 不包括垂直於座標軸和過原點的直線。

5、一般式

方程為ax+by+c=0(a,b不全為0) 。

擴充套件資料

由直線的斜率範圍來確定傾斜角的範圍:

(1)若直線的斜率範圍是(k1,k2)(k1k2>0),且k1=tanα1,k2=tanα2時,則傾斜角的取值範圍是(α1,α2);

(2)若直線的斜率範圍是(k1,k2)(k1<0,k2>0),且k1=tanα1,k2=tanα2時,則傾斜角的取值範圍是(0,α2)∪(α1,π);

(3)若直線的斜率範圍是(-∞,k1)∪(k2,+∞)且k1=tanα1<0,k2=tanα2>0,則傾斜角的取值範圍是(α2,α1);

(4)若直線的斜率範圍是(-∞,k)(k>0),且k=tanα時,則傾斜角的取值範圍是(0,α)∪(\frac,π)。

11樓:大頭聰

一般式為ax+by+c=0,它的優點就是它可以表示平面上的任意一條直線,僅此而已.

其它式都有特例直線不能表示.比如:

斜截式y=kx+b,就不能表示垂直x軸的直線x=a.

點斜式y-y0=k(x-x0),也不能表示垂直x軸的直線x=a截距式x/a+y/b=1不能表示截距為0時的直線,比如正比例直線.

12樓:匿名使用者

1:一般式:ax+by+c=0(a、b不同時為0)【適用於所有直線】a1/a2=b1/b2≠c1/c2←→兩直線平行a1/a2=b1/b2=c1/c2←→兩直線重合橫截距a=-c/a

縱截距b=-c/b

2:點斜式:y-y0=k(x-x0) 【適用於不垂直於x軸的直線】表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1【適用於不過原點或不垂直於x軸、y軸的直線】

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線4:斜截式:y=kx+b【適用於不垂直於x軸的直線】表示斜率為k且y軸截距為b的直線

5:兩點式:【適用於不垂直於x軸、y軸的直線】表示過(x1,y1)和(x2,y2)的直線兩點式(y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)

點斜式、斜截式、兩點式、截距式,分別怎轉化為直線的一般式、還有它們之間的互化,有什麼技巧???本人

13樓:__八瓶

交叉向乘 將y倒到一邊 即可化為一般是

14樓:yi人_歿

沒什麼技巧,就是把式子搬過來乘過去化成你要的那種

15樓:sd超越愛因斯坦

先把一般式的通式寫出 然後將你要轉換的形式 移項換成一般式 有的係數為0

16樓:古德里安

此題最佳回答的人不容易啊!

英語過去式的問題,英語一般過去式問題

1.could 是情態動詞 can 的過去式,情態動詞後面要用動詞原形,所以copy 不需要變化 2.句子的時態要一致,這一個賓語從句,前面asked 是過去時態,所以want也過去時態wanted 3.would 動詞原形是 過去將來時should 動詞原形 應為should 是情態動詞,所以後面...

英語一般式包括哪幾種,英語分為那幾式有哪些

一般過去,一般現在,一般將來 英語分為那幾式有哪些 一般式分為三種。來自 1.一般現在時 原型或單數第三人稱形式組合成的英語最 普通的時態,常用於表定律 真理以及習慣 2.一般過去時 使用動詞的過去式造句而成的表過去所發生的事的時態3.一般將來時 使用will 動詞原形 be going to 動詞...

學24式太極和42式有什麼不同?哪個好一點

樓上說得有點道理。記得在北京白雲觀曾經看到句話 太極拳乃修道之基 太極拳源於道家,放在這裡討論挺合適。哪個好,個人覺得主要取決於你學拳的目的。所謂的24式 42式,都屬於國家套路,而非傳統套路。被武術圈內的人常常戲稱為 太極操 在某種程度上失去了太極拳作為 拳 的原有的意義。所以應儘量學傳統套路。此...