1樓:百度文庫精選
內容來自使用者:天道酬勤能補拙
鞏固練習
bai一、選擇題1.化簡,結du
果是()zhi
daoa.b.c.d.2.計算的結果是()a.32 b.16 c. 64 d.128
3.若,且,則的值等於專()
a.b.c.d.2
4.下列各式中錯屬誤的是()
a.b.c.d.
5.、、這三個數的大小關係為()
a.b.c.d.6.已知定義在上的奇函式和偶函式滿足,若,則()
a. 2b.c.d.
二、填空題
7..8.=.
9.若,則=.
10.已知,則=.
三、解答題
11.計算:
(1);
(2).
12.計算下列各式:
(1);
(2).
13.計算:14.已知.
求證:為定值.
15.(1)化簡:;
(2)已知,求的值.
答案與解析
一、選擇題1. a原式===
=2. a,故選a。
3. c因為,所以,即.同理,又因為,所以,故.4.d d中左邊=
5. b,,.,.
6.b因為,又是奇函式,是偶函式,所以,所以,,兩式聯立解得,進一步求得.
二、填空題
7.原式=.8.原式=.
9.-23原式===4-27=-23.
10.因為,所以.
三、解答題
11.解:(1)原式=.
(2)原式===
==12.解:(1)原式===.
(2)原式=
=-()=0
2樓:小白痴
1.根號
復(7-(4根號3))=根號制((根
bai號3-2)^2)=根號du3-2,
根號(6-(4根號2))=根號((2-根號2)^zhi2)=2-根號2,
根號(5+(2根號6))=根號((根dao號3+根號2)^2)=根號3+根號2,
所以原式=2(根號3+根號2)
2. 等下,我想想
會了,根號(x^2-1)=1/2*絕對值(根號a/b-根號b/a)x^2-1=1/4*(根號a/b-根號b/a)^2剩下的就是自己去化簡了
好像不能求出具體直~
你試試吧,我反正算不出來~
3樓:帖晨枝慧穎
^^=1/[2^zhi(1/32)-1]
原式=[1-2^(1/32)][1+2^(1/32)].......[1+2^(1/2)]/[1-2^1/32)]
=[1-2^(1/16)][1+2^(1/16)]......[1+2^(1/2)]/[1-2^1/32)]
=-1/[1-2^1/32)]
=1/[2^(1/32)-1]
【dao2^(1/32)】為2的回32分之1次方答
4樓:賀俐零谷翠
同底相乘,底數不變指數相加
指數冪的指數冪的運演算法則
5樓:縱橫豎屏
口訣:指數加減底不變,同底數冪相乘除.
指數相乘底不變,冪的乘方要清楚.
積商乘方原指數,換底乘方再乘除.
非零數的零次冪,常值為 1不糊塗.
負整數的指數冪,指數轉正求倒數.
看到分數指數冪,想到底數必非負.
乘方指數是分子,根指數要當分母.
說明:拓展資料:一般地,在數學上我們把n個相同的因數a相乘的積記做a^n。
這種求幾個相同因數的積的運算叫做乘方,乘方的結果叫做冪。在a^n中,a叫做底數,n叫做指數。a^n讀作「a的n次方」或「a的n次冪「。
一個數可以看做這個數本身的一次方。例如,5就是5^1,指數1通常省略不寫。二次方也叫做平方,如5^2通常讀做」5的平方「;三次方也叫做立方,如5^3可讀做」5的立方「。
6樓:是月流光
運演算法則如下:
乘法:1. 同底數冪相乘,底數不變,指數相加。
即(m,n都是有理數)。
2. 冪的乘方,底數不變,指數相乘。
即(m,n都是有理數)。
3. 積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
即4.分式乘方, 分子分母各自乘方。即除法
1. 同底數冪相除,底數不變,指數相減。
即(a≠0,m,n都是有理數)。
2. 規定:
(1) 任何不等於零的數的零次冪都等於1。
即(2)任何不等於零的數的-p(p是正整數)次冪,等於這個數的p次冪的倒數。
即(規定了零指數冪與負整數指數冪的意義,就把指數的概念從正整數推廣到了整數。正整數指數冪的各種運演算法則對整數指數冪都適用。)
混合運算
對於乘除和乘方的混合運算,應先算乘方,後算乘除;如果遇到括號,就先進行括號裡的運算。
一般地,在數學上我們把n個相同的因數a相乘的積記做a^n。這種求幾個相同因數的積的運算叫做乘方,乘方的結果叫做冪。在a^n中,a叫做底數,n叫做指數。
a^n讀作「a的n次方」或「a的n次冪「。
一個數可以看做這個數本身的一次方。例如,5就是5^1,指數1通常省略不寫。二次方也叫做平方,如5^2通常讀做」5的平方「;三次方也叫做立方,如5^3可讀做」5的立方「。
起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即:
因為在十進位制中,十的次方很易計算,只需在後面加零即可,所以科學記數法藉此簡化記錄的數字;二的冪在電腦科學中相當重要。
法則口訣:
同底數冪的乘法:底數不變,指數相加冪的乘方;
同底數冪的除法:底數不變,指數相減冪的乘方;
冪的指數乘方:等於各因數分別乘方的積商的乘方
分式乘方:分子分母分別乘方,指數不變。
7樓:nice千年殺
同底數冪相乘,底數不變,指數相加;冪的乘方,底數不變,指數相乘同底數冪相除,底數不變,指數相減
1.a^x表示x個a相乘,a叫底數,x叫指數,a^x叫做冪。a^x的值永遠是非負數,可以畫出函式影象觀察。底數a也是非負數,且不等於1
2.(a^m)*(a^n)=a^(m+n),可以用冪的定義來推到證明3.(a^m)^n=a^mn,可以用冪的乘法法則推導4.同底數冪除法可推匯出a^0=1
8樓:匿名使用者
1. 同底數冪相乘,底數不變,指數相加。
即 (m,n都是有理數)。
2. 冪的乘方,底數不變,指數相乘。
即 (m,n都是有理數)。
3. 積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
即= · (m,n都是有理數)。
4.分式乘方, 分子分母各自乘方。
即(b≠0)。 1. 同底數冪相除,底數不變,指數相減。
即(a≠0,m,n都是有理數)。
2. 規定:
(1) 任何不等於零的數的零次冪都等於1。
即(a≠0)。
(2)任何不等於零的數的-p(p是正整數)次冪,等於這個數的p次冪的倒數。
即(a≠0,p是正整數)。
(規定了零指數冪與負整數指數冪的意義,就把指數的概念從正整數推廣到了整數。正整數指數冪的各種運演算法則對整數指數冪都適用。) 對於乘除和乘方的混合運算,應先算乘方,後算乘除;如果遇到括號,就先進行括號裡的運算。
9樓:若比鄰
指數冪的指數冪,其實質就是指數冪的乘方。
其運演算法則為:底數不變,指數相乘。即:
(m,n都是有理數)。
10樓:匿名使用者
我也想回答,但實力不允許啊
指數冪運演算法則 是什麼?
11樓:小時夢境
冪指數運演算法則,一起來學習一下吧
12樓:那林子的小鳥
^1.同底數冪的乘法:
2.冪的乘方(a^m)^n=a^(mn),與積的乘方(ab)^n=a^nb^n
3. 同底數冪的除法:
(1)同底數冪的除法:
(a≠0, m, n均為正整數,並且m>n)(2)零指數:
(3)負整數指數冪:
法則口訣
同底數冪的乘法:底數不變,指數相加冪的乘方;
同底數冪的除法:底數不變,指數相減冪的乘方;
冪的指數乘方:等於各因數分別乘方的積商的乘方分式乘方:分子分母分別乘方,指數不變。
13樓:匿名使用者
乘法1. 同底數冪相乘,底數不變,指數相加。
即(m,n都是有理數)。
2. 冪的乘方,底數不變,指數相乘。
即(m,n都是有理數)。
3. 積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
即(m,n都是有理數)。
4.分式乘方, 分子分母各自乘方。
即(b≠0)。
除法1. 同底數冪相除,底數不變,指數相減。
即(a≠0,m,n都是有理數)。
2. 規定:
(1) 任何不等於零的數的零次冪都等於1。
即(2)任何不等於零的數的-p(p是正整數)次冪,等於這個數的p次冪的倒數。
即(a≠0,p是正整數)。
(規定了零指數冪與負整數指數冪的意義,就把指數的概念從正整數推廣到了整數。正整數指數冪的各種運演算法則對整數指數冪都適用。)
混合運算
對於乘除和乘方的混合運算,應先算乘方,後算乘除;如果遇到括號,就先進行括號裡的運算。
拓展資料法則口訣
同底數冪的乘法:底數不變,指數相加冪的乘方;
同底數冪的除法:底數不變,指數相減冪的乘方;
冪的指數乘方:等於各因數分別乘方的積商的乘方分式乘方:分子分母分別乘方,指數不變。
14樓:時間要發光
擴充套件資料:
指數函式的一般形式為y=a^x(a>0且不=1) ,函式圖形下凹,a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的函式。指數函式既不是奇函式也不是偶函式。要想使得x能夠取整個實數集合為定義域,則只有使得a的不同大小影響函式圖形的情況。
記憶口決:
有理數的指數冪,運演算法則要記住。
指數加減底不變,同底數冪相乘除。
指數相乘底不變,冪的乘方要清楚。
積商乘方原指數,換底乘方再乘除。
非零數的零次冪,常值為 1不糊塗。
負整數的指數冪,指數轉正求倒數。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
參考來自:指數冪運演算法則
15樓:demon陌
^同底數冪相乘,底數不變,指數相加
即:a^m×a^n=a^(m+n)
同底數冪相除,底數不變,指數相減
即:a^m÷a^n=a^(m-n)
拓展資料:
一般地,在數學上我們把n個相同的因數a相乘的積記做a^n。這種求幾個相同因數的積的運算叫做乘方,乘方的結果叫做冪。在a^n中,a叫做底數,n叫做指數。
a^n讀作「a的n次方」或「a的n次冪「。
一個數可以看做這個數本身的一次方。例如,5就是5^1,指數1通常省略不寫。二次方也叫做平方,如5^2通常讀做」5的平方「;三次方也叫做立方,如5^3可讀做」5的立方「。
冪運算是一種關於冪的數**算。同底數冪相乘,底數不變,指數相加。同底數冪相除,底數不變,指數相減。冪的冪,底數不變,指數相乘。
(1)同底數冪的除法:am÷an=a(m-n) (a≠0, m, n均為正整數,並且m>n)
①同底數冪的除法是整式除法的基礎,要熟練掌握。同底數冪的除法法則是根據除法是乘法的逆運算歸納總結出來的,和前面講的冪的運算的三個法則相比,在這裡底數a是不能為零的,否則除數為零,除法就沒有意義了。又因為在這裡沒有引入負指數和零指數,所以又規定m>n。
能從特殊到一般地歸納出同底數冪的除法法則。
②同底數冪的兩個冪相除,如果被除式的指數與除式的指數相等,那麼商等於1,即am÷an=1,m是任意自然數。a≠0, 即轉化成a0=1(a≠0)。
③同底數冪的兩個冪相除,如果被除式的指數小於除式的指數,即m-n<0時,指數部分為負整數則轉化成負整數指數冪,再用負整數指數冪法則。
④要注意和其它幾個冪的運演算法則相區別。
⑤還應強調:am·an=am+n與am+n÷an=am的互逆運算關係,同時指數的變化也是互逆運算關係,應溝通兩者的聯絡。
冪的運算指數為0怎麼辦?冪的運算指數為0如何解決?
除0外的任何數的0次冪都等於1。如果指數為0,注意2點 1 當底數x不為0的時候,x 0 1 x 0表示x的0次冪 2 當底數為0的時候,0 0無意義。至於為什麼,這都是0次冪的定義直接規定的,沒什麼計算過程。定義直接規定,0的0次冪無意義,非零數的0次冪等於1。因為x的0次冪是根據x 1 x 1 ...
指數冪化簡公式關於指數冪的化簡。
樓上方法對,但計算錯了。是乘一個1 2 1 32 再除以一個1 2 1 32 具體計算如下 原式 1 2 1 32 1 2 1 32 1 2 1 16 1 2 1 8 1 2 1 4 1 2 1 2 1 2 1 32 1 2 1 16 1 2 1 16 1 2 1 8 1 2 1 4 1 2 1 2...
正整數指數冪的運算性質
其實1 2 3都可以寫成a m n 你看的書很不正規啊 呵呵,別被那書誤導 正整數指數冪的運算性質 你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是?格致的?你是...