1樓:匿名使用者
⒈l弧長= r=nπr180 s扇= lr= r2 =⒉正弦定理: = = = 2r(r為三角形外接圓半徑)⒊餘弦定理:a =b +c -2bc b =a +c -2ac c =a +b -2ab
⒋s⊿= a = ab = bc = ac = =2r= = = =pr=
(其中 , r為三角形內切圓半徑)
⒌同角關係:
⑴商的關係:① = = = ②
③ ④
⑤ ⑥
⑵倒數關係:
⑶平方關係:
⑷ (其中輔助角 與點(a,b)在同一象限,且 )⒍函式y= k的圖象及性質:( )
振幅a,週期t= , 頻率f= , 相位 ,初相⒎五點作圖法:令 依次為 求出x與y, 依點 作圖
2樓:
積化和差:積化和差五句話,前角用和后角差。正餘二分正弦和,餘正二分正弦差。余余二分餘弦和,正正負半餘弦差。
和差化積:弦和化積先有二,同名半和餘半差。弦差有二分正負,異名半和正半差。
三倍角公式:三倍角,要用減。(正弦)三單,四單立;(餘弦)四單立,三單。
3樓:匿名使用者
一)兩角和差公式 (寫的都要記)
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa �
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
二)用以上公式可推出下列二倍角公式
tan2a=2tana/[1-(tana)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面這個餘弦的很重要)
sin2a=2sina*cosa
三)半形的只需記住這個:
tan(a/2)=(1-cosa)/sina=sina/(1+cosa)
四)用二倍角中的餘弦可推出降冪公式
(sina)^2=(1-cos2a)/2
(cosa)^2=(1+cos2a)/2
五)用以上降冪公式可推出以下常用的化簡公式
1-cosa=sin^(a/2)*2
1-sina=cos^(a/2)*2
+ 一)兩角和差公式 (寫的都要記)
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa �
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
二)用以上公式可推出下列二倍角公式
tan2a=2tana/[1-(tana)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面這個餘弦的很重要)
sin2a=2sina*cosa
三)半形的只需記住這個:
tan(a/2)=(1-cosa)/sina=sina/(1+cosa)
四)用二倍角中的餘弦可推出降冪公式
(sina)^2=(1-cos2a)/2
(cosa)^2=(1+cos2a)/2
五)用以上降冪公式可推出以下常用的化簡公式
1-cosa=sin^(a/2)*2
1-sina=cos^(a/2)*2
公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈z)
誘導公式記憶口訣
※規律總結※
上面這些誘導公式可以概括為:
對於k·π/2±α(k∈z)的個三角函式值,
①當k是偶數時,得到α的同名函式值,即函式名不改變;
②當k是奇數時,得到α相應的餘函式值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇變偶不變)
然後在前面加上把α看成銳角時原函式值的符號。
(符號看象限)
例如:sin(2π-α)=sin(4·π/2-α),k=4為偶數,所以取sinα。
當α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號為「-」。
所以sin(2π-α)=-sinα
上述的記憶口訣是:
奇變偶不變,符號看象限。
公式右邊的符號為把α視為銳角時,角k·360°+α(k∈z),-α、180°±α,360°-α
所在象限的原三角函式值的符號可記憶
水平誘導名不變;符號看象限。
各種三角函式在四個象限的符號如何判斷,也可以記住口訣「一全正;二正弦;三為切;四餘弦」.
這十二字口訣的意思就是說:
第一象限內任何一個角的四種三角函式值都是「+」;
第二象限內只有正弦是「+」,其餘全部是「-」;
第三象限內切函式是「+」,弦函式是「-」;
第四象限內只有餘弦是「+」,其餘全部是「-」.
其他三角函式知識:
同角三角函式基本關係
⒈同角三角函式的基本關係式
倒數關係:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關係:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關係:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函式關係六角形記憶法
六角形記憶法:(參看**或參考資料連結)
構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。
(1)倒數關係:對角線上兩個函式互為倒數;
(2)商數關係:六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。
(主要是兩條虛線兩端的三角函式值的乘積)。由此,可得商數關係式。
(3)平方關係:在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。
兩角和差公式
⒉兩角和與差的三角函式公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
倍角公式
⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半形公式
⒋半形的正弦、餘弦和正切公式(降冪擴角公式)
1-cosα
sin^2(α/2)=—————
2 1+cosα
cos^2(α/2)=—————
2 1-cosα
tan^2(α/2)=—————
1+cosα
萬能公式
⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
萬能公式推導
附推導:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然後用α/2代替α即可。
同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。
三倍角公式
⒍三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推導
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即 sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式聯想記憶
記憶方法:諧音、聯想
正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要「掙錢」(音似「正弦」))
餘弦三倍角:4元3角 減 3元(減完之後還有「餘」)
☆☆注意函式名,即正弦的三倍角都用正弦表示,餘弦的三倍角都用餘弦表示。
和差化積公式
⒎三角函式的和差化積公式
α+β α-β
sinα+sinβ=2sin—----·cos—---
2 2α+β α-β
sinα-sinβ=2cos—----·sin—----
2 2α+β α-β
cosα+cosβ=2cos—-----·cos—-----
2 2α+β α-β
cosα-cosβ=-2sin—-----·sin—-----
2 2積化和差公式
⒏三角函式的積化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]
和差化積公式推導
附推導:
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了積化和差的四個公式以後,我們只需一個變形,就可以得到和差化積的四個公式.
我們把上述四個公式中的a+b設為x,a-b設為y,那麼a=(x+y)/2,b=(x-y)/2
把a,b分別用x,y表示就可以得到和差化積的四個公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
向量的運算
加法運算
ab+bc=ac,這種計演算法則叫做向量加法的三角形法則。
已知兩個從同一點o出發的兩個向量oa、ob,以oa、ob為鄰邊作平行四邊形oacb,則以o為起點的對角線oc就是向量oa、ob的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a•b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a•b的幾何意義:數量積a•b等於a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應座標的乘積的和。
求人教版高中數學必修五A版電子課本,或者把課堂練習如圖發給我
你直接輸入 人教版高中數學必修五a版電子課本 一搜尋就會有。求人教版高中數學必修五a版電子課本,或者把課堂練習如圖發給我 那是必修四的,求必修五 等,急求 這個復應制 該是你需要的 求人教版高中數學必修四課後習題的答案,最好是輔導書裡帶的那種答案。我的雲覆盤,沒制辦法發這麼多bai圖,du 你只能自...
北師大版小學語文課本中的所有古文
生活中有很多事情等著我們去發現,只要認真就能有發現。比如牛頓發現地球有引力,人才不會飄起來而是早地面上。只要我們認真就能有發現。有一次晚上我叫媽媽燒開水等一下我要泡牛奶。媽媽燒好開水或倒入熱水壺裡用木塞塞好。到了晚上九時我把奶粉倒在杯子裡然後到廚房去拿熱水壺,卻發現木塞不見了。我找呀找呀找終於在椅子...
人教高中數學教材ab版的區別,人教高中數學教材AB版的區別?
人教高中數學教材ab版的區別如下 1 知識內容不同 a版與b版在同一模組知識內容上有所不同。a版的一些數學概念要少於b版。版和b版在第一章裡有區別,人教a版沒有反三角函式,沒有餘切值,但是人教b版都有。2 編排順序不同 如祖?原理在b版上是課程上主要學習與講解的。而a版則在探索與發現中給出的。還有第...