大家幫我看下這個不定積分是不是算錯了1x2a2dx

2021-03-04 05:20:17 字數 5499 閱讀 3560

1樓:匿名使用者

中間錯.(1/a)ln|x/√(x^2-a^2)-a/√(x^2-a^2)|+c=(1/a)ln|(x-a)/√(x^2-a^2)|+c

=(1/2a)ln|(x-a)/(x+a)|+c

求不定積分∫1/(a^2+x^2)dx 解答越詳細越好。。。

2樓:demon陌

令x=atanz

dx=asec2z dz

原式=∫asecz*asec2z dz

=∫secz dtanz,a2先省略

=secztanz - ∫tanz dsecz

=secztanz - ∫tanz(secztanz) dz

=secztanz - ∫sec3z dz + ∫secz dz

∵2∫sec3z dz = secztanz + ln|secz + tanz|

∴∫sec3z dz = (1/2)secztanz + (1/2)ln|secz + tanz| + c

原式=(1/2)a2secztanz + (1/2)a2ln|secz + tanz| + c1

=(1/2)x√(a2+x2) + (1/2)a2ln|x + √(a2+x2)| + c2

3樓:匿名使用者

∫ dx/(a2 + x2)

= ∫ dx/[a2(1 + x2/a2)]= (1/a2)∫ dx/(1 + x2/a2)= (1/a2)∫ d(x/a · a)/(1 + x2/a2)= (1/a2)(a)∫ d(x/a)/(1 + x2/a2)= (1/a)∫ d(x/a)/[1 + (x/a)2]= (1/a)arctan(x/a) + c <==公式∫ dx/(1 + x2) = arctan(x) + c

不明白你的過程,沒有1/2的,那是1/a

∫1/(1+√1-x^2)dx,求不定積分

4樓:drar_迪麗熱巴

解題過程如下圖:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

5樓:匿名使用者

可以用三角換元法,自己試下,我給你一種不一樣的解答吧。

以上,請採納。

6樓:所示無恆

解答步驟如圖:

連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

求不定積分∫x/√(1+x-x^2)dx

7樓:等待楓葉

|不定積分∫x/(x^2-x-2 )dx的結果為2/3*ln|x-2|+1/3ln|x+1|+c。

解:因為x/(x^2-x-2)=x/((x-2)*(x+1)),

令x/((x-2)*(x+1))=a/(x-2)+b/(x+1)=(ax+a+bx-2b)/((x-2)*(x+1)),

可得a=2/3,b=1/3。那麼,

∫x/(x^2-x-2)dx

=∫x/((x-2)*(x+1))dx

=∫(2/(3*(x-2))+1/(3*(x+1)))dx

=2/3*∫1/(x-2)dx+1/3∫1/(x+1)dx

=2/3*ln|x-2|+1/3*ln|x+1|+c

擴充套件資料:

1、因式分解的方法

(1)十字相乘法

對於x^2+px+q型多項式,若q可分解因數為q=a*b,且有a+b=p,那麼可應用十字相乘法對多項式x^2+px+q進行因式分解。

x^2+px+q=(x+a)*(x+b)

(2)公式法

平方差公式,a^2-b^2=(a+b)*(a-b)。

完全平方和公式,a^2+2ab+b^2=(a+b)^2。

完全平方差公式,a^2-2ab+b^2=(a-b)^2。

2、不定積分湊微分法

通過湊微分,最後依託於某個積分公式。進而求得原不定積分。

例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+c

直接利用積分公式求出不定積分。

3、不定積分公式

∫mdx=mx+c、∫1/xdx=ln|x|+c、∫cscxdx=-cotx+c

8樓:寂寞的楓葉

^∫x/(x^2-2ax+1)dx的不定積分為1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

解:∫x/(x^2-2ax+1)dx

=1/2*∫(2x-2a+2a)/(x^2-2ax+1)dx

=1/2*∫(2x-2a)/(x^2-2ax+1)dx+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a*∫1/((x-a)^2+1-a^2)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

令(x-a)/√(1-a^2)=tant,則x=√(1-a^2)*tant+a,那麼

∫1/(((x-a)/√(1-a^2))^2+1)dx

=∫1/(sect)^2d(√(1-a^2)*tant+a)

=√(1-a^2)*∫(sect)^2/(sect)^2dt

=√(1-a^2)*∫1dt

=√(1-a^2)*t+c

又(x-a)/√(1-a^2)=tant,則t=arctan((x-a)/√(1-a^2)),則

∫1/(((x-a)/√(1-a^2))^2+1)dx

=√(1-a^2)*t+c

=√(1-a^2)*arctan((x-a)/√(1-a^2))+c

所以∫x/(x^2-2ax+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

即∫x/(x^2-2ax+1)dx的不定積分為:

1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

擴充套件資料:

1、不定積分的公式型別

(1)含ax^2±b的不定積分

∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c

(2)含a+bx的不定積分

∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c

(3)含x^2±a^2的不定積分

∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c

2、不定積分的求解方法

(1)換元積分法

例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c

(2)積分公式法

例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c

(3)分部積分法

例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x

3、常用的積分公式

∫(secx)^2dx=tanx+c、∫1/(x^2+x+1)d(x^2+x+1)=ln|x^2+x+1|+c、積分5dx=5x+c

9樓:我的我451我

被積函式是分數形式一般要拆分,怎麼拆必須公式要熟。

∫x/(x^2-x-2 )dx=∫x/[(x-2)(x+1)]dx=∫[1/(x+1)+2/(x-2 )(x+1)]dx

=∫[1/(x+1)+2/3*[1/(x-2 )-1/(x+1)]dx=∫[1/3(x+1)+2/3(x-2 )]dx

=1/3*ln(x+1)+2/3*ln(x-2)+c c為常數

拆分規則:在有意義的情況下,是任何一個賦值都會滿足的。

因為本身有理式的拆分就是一個恆等式求解的過程,也就是設a(x)=a(x),那麼你無論給左右兩邊取什麼值,只要這個值在a(x)的定義域內,該等式一定成立的。

而且如果不採用賦值法的話,就直接進行同分,最後我們用到的定理叫做多項式恆等定理,效果是一樣的。

10樓:匿名使用者

顯然[1+√(1+x)] *[1-√(1+x)]=1 -1- x= -x

於是得到∫x/[1+√(1+x)]dx

=∫ -1+ √(1+x) dx

代入基本公式∫x^n dx=1/(n+1) *x^(n+1)原積分= -x +2/3 *(1+x)^(3/2) +c,c為常數

11樓:匿名使用者

|令x=tant, 則dx=sec2tdt

∫dx/[x√(1+x2)]

=∫sec2t/(tantsect) dt

=∫sect/tant dt

=∫1/sint dt

=∫csct dx

=∫csct(csct-cott)/(csct-cott)dt

=∫(csc2t-csctcott)/(csct-cott)dx

=∫d(csct-cott)/(csct-cott)

=ln|csct-cott|+c

=ln|[√(1+x2)-1]/x|+c

=ln[√(1+x2)-1]-ln|x|+c

c為任意常數

**********==

你的答案和我的答案其實是一樣的

-1/2lnl(1+(1+x^2)^1/2)/(1-(1+x^2)^1/2)l+c

=(1/2) ln[l(1+(1+x^2)^1/2)/(1-(1+x^2)^1/2)l^(-1)]+c.......利用對數性質,把負號消掉

=(1/2)lnl(1-(1+x^2)^1/2)/(1+(1+x^2)^1/2)l+c

=(1/2)ln|(1-(1+x^2)^1/2)2/x2|+c.......對數真數分母有理化,分子分母同時乘以1-(1+x^2)^1/2

=ln|((1+x^2)^1/2-1)/x|+c.......利用對數性質,把1/2化進真數

=ln[√(1+x2)-1]-ln|x| +c .......對數運算性質

大家幫看下這個是不是沉香木,大家幫看下這個是不是沉香木?

用心回答 你的 bai我看不是du沉香木。鑑定沉香1按照你zhi這沉香木的成色來看,dao香味一定是很重專的,香味擋都擋不住。屬2沉香木的硬度很小,用指甲用力摳,指甲就會陷進去。3沉香木一般是不會沉水,浮在水面。4沉香木由於密度小,同樣大小的木材,沉香木明顯很輕。5沉香木一般不會有這麼黑,感覺油性很...

大家幫我看下這個配置,大家幫我看下這個配置值多少錢?

肯定第二個好,因為第二個無論從效能配置,還是以後做什麼用途 處理或玩大型網路遊戲 都是綽綽有餘。主要是效能穩定。下面個不錯現在普通使用者主流的!上面個是低一點不過就比下面個低6 個點!中毒不中毒是你係統軟體防禦問題!下面哪個要好點.但是顯示卡不好 不要採用512m的,8500gt 512m的應該是d...

這道題答案是不是錯了,微積分不定積分看圖,我覺得答案裡要有 C

沒有c方法如下所示。請認真檢視。祝你學習愉快,每天過得充實,學業進步!滿意請釆納!沒有加c,這個是原函式告訴你了,你求導就行,一求導,常數不就沒了嗎?求不定積分原函式後面要加個常數,這個是反過來告訴你不定積分的,不要混淆。高數。不定積分。這道題是不是答案錯了啊,我算了兩遍都和答案不一樣 前面的沒有什...