多元函式一階偏導大於零或者小於零說明什麼

2021-03-22 00:08:39 字數 3052 閱讀 3963

1樓:匿名使用者

如果多元函式的一階偏導數大於0,是指多元函式沿著這個方向是單調遞增的,反之一階偏導數小於0,指多元函式沿著這個方向是單調遞減,和一元函式導數的意義相同。

一階導數表示的是函式的變化率,最直觀的表現就在於函式的單調性。

定理:設f(x)在[a,b]上連續,在(a,b)內具有一階導數,那麼:

(1)若在(a,b)內f'(x)>0,則f(x)在[a,b]上的圖形單調遞增;

(2)若在(a,b)內f'(x)<0,則f(x)在[a,b]上的圖形單調遞減;

(3)若在(a,b)內f'(x)=0,則f(x)在[a,b]上的圖形是平行(或重合)於x軸的直線,即在[a,b]上為常數。

2樓:魅力

如果一階偏導數大於0

當然就是指

多元函式沿著這個方向

是單調遞增的

這和一元函式導數的意義是一回事

3樓:

如果這個函式是連續函式,那麼二階導數大於零表示其為凹函式,二階導數小於零表示其為凸函式,如果一階導數大於零表示其單調遞增,一階導數小於零標書其單調遞減

4樓:夜哭雨

在偏導為零的這個點,函式對求偏導的自變數的變化率是零,也就是說在認為其他自變數為常量的情況下,函式在這一點的變化是零

一階偏導數大於0的含義

5樓:匿名使用者

如果一階偏導數大於0

當然就是指

多元函式沿著這個方向

是單調遞增的

這和一元函式導數的意義是一回事

6樓:黑桐幹也

這個曲面是持續上升的

多元函式的複合函式二階偏導公式是什麼?為什麼書上沒有呢?

7樓:哎喲

公式為:y'=2x的導數為y''=2。

y=x²的導數為y'=2x,二階導數即y'=2x的導數為y''=2。

如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。

8樓:看完就跑真刺激

各個分量的偏導數為0,這是一個必要條件。充分條件是這個多元函式的二階偏導數的行列式為正定或負定的。

如果這個多元函式的二階偏導數的行列式是半正定的則需要進一步判斷三階行列式。如果這個多元函式的二階偏導數的行列式是不定的,那麼這時不是極值點。

以二元函式為例,設函式z=f(x,y)在點(x。,y。)的某鄰域內有連續且有一階及二階連續偏導數,又fx(x。,y。),fy(x。,y。)=0,

令fxx(x。,y。)=a,fxy=(x。,y。)=b,fyy=(x。,y。)=c

則f(x,y)在(x。,y。)處是否取得極值的條件是

(1)ac-b*b>0時有極值

(2)ac-b*b<0時沒有極值

(3)ac-b*b=0時可能有極值,也有可能沒有極值如果是n元函式需要用行列式表示。

9樓:化化墨跡

一般都會用對應法則加下標來寫

二元函式極值點的問題,請問二元函式取極值時,必要條件為什麼是二階偏導數大於等於0而不是大於0?如圖

10樓:

二階偏導數等於0時,

也可以取到極值。

比如,一個橫放的圓柱下半,z=-√(r²-y²),在x=0,y=0,z=-r,取得極小值。

∂z/∂x=0,∂²z/∂x²=0,

又比如一個放在平面xoy上的中心在原點的圓環下半,z=-√[r²-(r-√(x²+y²))²],r為環管半徑,r為環中心半徑。

在(r,0,-r)點,有極小值,-r,

∂z/∂y=-(1/2)/√[r²-(r-√(x²+y²))²].(-2(r-√(x²+y²))(-(1/2)2y/√(x²+y²)

=-y(r-√(x²+y²)/

∂²z/∂y²=-(r-√(x²+y²)/+y/2.2y/√(x²+y²)/+(1/2)y(r-√(x²+y²)/.(-2(r-√(x²+y²))(-(1/2)2y/√(x²+y²)

+(1/2)y(r-√(x²+y²)/.2y

x=r,y=0,代入:

∂²z/∂y²|(r,0,-r)=-(r-√(r²+0²)/+0

=0想象一個平放的水槽,槽底有最小值,沿槽的軸線方向,二次導數=0;

想象一個平放的平底鍋,x,y方向的二次偏導數都是0,但是鍋底有極小值。

多元函式二階混合偏導意義

多元函式二階偏導數存在為何一階不一定連續

11樓:小小芝麻大大夢

一個函式連續,要求沿著任意方向趨近於一個點的極限存在

且相等,但是二階偏導數存在,只能說明一階偏導數沿著座標軸的極限存在。所以並不滿足一階偏導數存在的條件。

對於連續性,在自然界中有許多現象,如氣溫的變化,植物的生長等都是連續地變化著的。這種現象在函式關係上的反映,就是函式的連續性。

簡單地說,如果一個函式的影象你可以一筆畫出來,整個過程不用抬筆,那麼這個函式就是連續的。

擴充套件資料

一、不連續」是不能同時滿足連續的三個條件的點:

1、函式在該點處沒有定義;

2、若函式在該點有定義,但函式在該點附近的極限不存在;

3、雖然函式在該點處有定義,極限也存在,但是二者不相等。

二、連續函式的定理:

定理一 在某點連續的有限個函式經有限次和、差、積、商(分母不為0) 運算,結果仍是一個在該點連續的函式。

定理二 連續單調遞增 (遞減)函式的反函式,也連續單調遞增 (遞減)。

定理三 連續函式的複合函式是連續的。

這些性質都可以從連續的定義以及極限的相關性質中得出。

12樓:林清他爹

(一階)偏導存在並不能說明函式連續。同樣的道理,把一階偏導數看成一個新的函式,二階偏導數存在並不能說明一階偏導數連續。以上

函式可導指的是函式一階可導還是N階都可導

如果沒有特別說明 指的應該是1階 假如有n階,那麼一階可導,n階也可。區間內一階可導的函式是否二階可導?如果否,請舉出例子。一階可導,二階不一定可導 如 f x x 2 x 0 x 2 x 0 在 r 上,一階導函式 f x 2 x 但 f x 在 x 0 處不可導 n階可導函式與n階連續可導的區別...

求函式的最大值,二階導小於零接下來好辦,但是如果二階導大於零怎麼辦

如果駐點的二階導大於零,極值點是極小值點,最大值 區間兩個端點函式值中大的那個。令二導等於0,求出x值。那就更好了,求邊界的 這題我求最值可不可以直接求二階導,因為二階導小於0是凸函式,所以在一階導為零的點的函式值是最大值?當然不能直接這樣 一階導數為零 而且二階導數小於零的點 肯定是極大值點 但是...

二階導數零,為什麼一階導數遞減,為什麼二階導數可以判斷極值

這個是類推。一階導小於0,則原函式為減函式 二階導小於0,則一階導為減函式。同理 n階導小於0,則n 1階導為減函式。導數 0,是減函式。為什麼二階導數可以判斷極值 二階導數的作用是根據其正負,判斷一階導數的單調性 二階導數大於零,那麼一階導數單調遞增 二階導數小於零,那麼一階導數單調遞減 然後根據...