關於二重積分的輪換對稱性問題,關於二重積分輪換對稱性問題

2021-03-04 04:50:36 字數 2574 閱讀 7886

1樓:

二重積分輪換對稱性,一點都不難

2樓:援手

你說的復那幾種情況都制不是輪

換對稱性,首先所謂bai輪換對稱性就是,du如果zhi把f(x,y)中的x換成

daoy,y換成x後,f(x,y)的形式沒有變化,就說f(x,y)具有輪換對稱性。例如x^2+y^2有輪換對稱性,而2x+3y沒有輪換對稱性(因為換完後是2y+3x,和原來的不一樣)。下面說明輪換對稱性在二重積分中的應用,我們知道二重積分的積分割槽域的邊界可以用方程f(x,y)=0表示,如果這裡的f(x,y)具有輪換對稱性,那麼被積函式中的x和y互換後積分結果不變。

例如∫∫x^2dxdy,積分割槽域為圓周x^2+y^2=1,由於輪換對稱性可知∫∫x^2dxdy=∫∫y^2dxdy(這就是把被積函式中的x換成了y),因此積分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用極座標計算就簡單多了。有不明白的地方歡迎追問。

關於二重積分輪換對稱性問題

3樓:諾言_雨軒

今天我抄和樓主遇到了

同樣的問題,不過我解決了。可能這麼多年樓主已經解決問題了,不過我還是在這裡說一下。首先,樓主舉出的例子在第一段「得到」緊跟的那個等式是錯誤的,原因在於用-x代替x時,只是把積分變數和被積函式換掉了,而沒有換掉積分上下限。

比如x從0到1,用-x替代時,上下限對應為從0到-1,而不是-1到0,所以替換掉的結果和原式互為相反數了

4樓:匿名使用者

不是這樣的,

1對於dxy是關於y軸對稱的區域,滿足∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy

(所以如果f(x,y)是個回關於x的奇函式的話,

答f(-x, y)= -f(x,y)

所以∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy= -∫∫f(x, y)dxdy

得到∫∫f(x,y)dxdy=0)

2如果dxy是關於y=x對稱的區域,那麼∫∫f(x,y)dxdy=∫∫f(y, x)dxdy

(所以如果積分函式滿足f(y,x)= -f(x,y),就能得出∫∫f(x,y)dxdy=0)

3如果dxy是關於y=-x對稱,那麼∫∫f(x,y)dxdy=∫∫f(-y, -x)dxdy

4關於dxy是原點對稱的區域,那麼∫∫f(x,y)dxdy=∫∫f(-x, -y)dxdy

5樓:援手

你說的bai那幾種情況都du

不是輪換對稱性

,首先所zhi謂輪換對稱dao性就是,如果把f(x,y)中的版x換成權y,y換成x後,f(x,y)的形式沒有變化,就說f(x,y)具有輪換對稱性。例如x^2+y^2有輪換對稱性,而2x+3y沒有輪換對稱性(因為換完後是2y+3x,和原來的不一樣)。下面說明輪換對稱性在二重積分中的應用,我們知道二重積分的積分割槽域的邊界可以用方程f(x,y)=0表示,如果這裡的f(x,y)具有輪換對稱性,那麼被積函式中的x和y互換後積分結果不變。

例如∫∫x^2dxdy,積分割槽域為圓周x^2+y^2=1,由於輪換對稱性可知∫∫x^2dxdy=∫∫y^2dxdy(這就是把被積函式中的x換成了y),因此積分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用極座標計算就簡單多了。有不明白的地方歡迎追問。

關於二重積分的對稱性問題

6樓:鍾靈秀秀秀

對於dxy是關於y軸對稱的區域,滿足∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy。

如果dxy是關於y=x對稱的區域,那麼∫∫f(x,y)dxdy=∫∫f(y, x)dxdy(所以如果積分函式滿足f(y,x)= -f(x,y),就能得出∫∫f(x,y)dxdy=0)。

如果dxy是關於y=-x對稱,那麼∫∫f(x,y)dxdy=∫∫f(-y, -x)dxdy。

7樓:

二重積分輪換對稱性,一點都不難

8樓:匿名使用者

二重積分主要是看積分函式的奇偶性,如果積分割槽域關於x軸對稱考察被積分函式y的奇偶,如果為奇函式,這為0,偶函式這是其積分限一半的2倍。如果積分割槽域關於y 軸對稱考察被積分函式x的奇偶.三重積分也有奇偶性,但是有差別,要看積分割槽域對平面的對稱性,即 xoy xoz yoz

9樓:朱安徒

我個人認為:

(1)按原點對稱的說法也是對的,但是一三象限的積分值相同且為正值,二四象限的積分值也相同且為負值,而二四象限的積分值正好是一三象限積分值的相反數,所以總積分為0

但是(2)卻不為0,是2倍的一象限積分值,為什麼呢?

因為這時的點集(x,y)只能取在一三象限。

這類題目一般先判斷範圍的對稱性,再判斷被積函式的對稱性我也幾年沒做高數,有說錯的地方請大家指正。。。

10樓:匿名使用者

是關於原點對稱,但是關於原點對稱,積分也不一定就不是0啊~~?

高數題,關於二重積分。根據輪換對稱性,為什麼不是我寫的那樣?

11樓:尹六六老師

根據奇偶對稱性

∫∫xdxdy=∫∫ydxdy=0

高數題,關於二重積分。根據輪換對稱性,為什麼不是我寫的那樣

根據奇偶對稱性 xdxdy ydxdy 0 關於二重積分的輪換對稱性問題 二重積分輪換對稱性,一點都不難 你說的復那幾種情況都制不是輪 換對稱性,首先所謂bai輪換對稱性就是,du如果zhi把f x,y 中的x換成 daoy,y換成x後,f x,y 的形式沒有變化,就說f x,y 具有輪換對稱性。例...

二重積分的乙個問題,二重積分問題?

關於x是奇函式,就是把y看成常數,實在理解不了,就把y看成是1,如z xy,看成z x,就是奇函式,z x 2 y,看成z x 2,就是偶函式,討論關於x是什麼函式,與y無關,討論關於y是什麼函式,與x無關。關於x是奇函式,把y看成常數,積分割槽域關於y軸對稱時,它的積分你可以按照定積分的方法理解,y...

二重積分範圍的問題,二重積分用極座標形式怎麼確定範圍,根據什麼,是d還是根據被積分的部分啊,極座標完全不太懂。

因為他的整個範圍就在0到 2這個極限內 利用極座標計算二重積分中,的範圍如何確定 確定 的範圍的方法 看這個區域所在的象限範圍,解兩曲線的交點座標 x,y 後,角度 arctan y x 就可得到 的範圍。極座標 的變化都是從原點位置開始掃起的。注意角度必須是弧度制。一般分3種情況 1 原點 極點 ...