二重積分範圍的問題,二重積分用極座標形式怎麼確定範圍,根據什麼,是d還是根據被積分的部分啊,極座標完全不太懂。

2021-03-04 05:12:36 字數 2015 閱讀 8752

1樓:j機械工程

因為他的整個範圍就在0到π/2這個極限內

利用極座標計算二重積分中,θ的範圍如何確定

2樓:桑葚味的小桑葚

確定θ的範圍的方法:看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),就可得到θ的範圍。極座標θ的變化都是從原點位置開始掃起的。

注意角度必須是弧度制。

一般分3種情況:

1、原點(極點)在積分割槽域的內部,角度範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,角度範圍從區域的邊界,按逆時針方向掃過去,到另一條止;

3、原點(極點)在積分割槽域之外,角度範圍從區域的靠極軸的邊界,按逆時針方向掃過去,到另一條止。

3樓:是你找到了我

1、原點(極點)在積分割槽域的內部

,θ的範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分割槽域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

有許多二重積分僅僅依靠直角座標下化為累次積分的方法難以達到簡化和求解的目的。當積分割槽域為圓域,環域,扇域等,或被積函式為

等形式時,採用極座標會更方便。

4樓:匿名使用者

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

二重積分用極座標形式θ怎麼確定範圍,根據什麼,是d還是根據被積分的部分啊,極座標完全不太懂。 10

5樓:不是苦瓜是什麼

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2。

1、原點(極點)在積分割槽域的內部,θ的範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分割槽域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

6樓:后街老訞

沒有題不太好回答,θ的取值範圍一般是根據草圖確定的,直接通過直角座標系就可以得到,比如說被積區域是圓心在原點處的整個圓,那麼就取2派,若只取上半個圓就取0到派,等等,若是半徑為1 圓心在(0,1)處的整個圓,就取0到派,。這樣說就懂了吧。先理解好被積函式是1的時候,極座標是怎麼計算面積(被積函式是1)就懂了

7樓:木沉

極座標只是座標變換,雖然引數域發生了改變,但是被表示的點是不會變化的。

所以theta的範圍應該根據被積分的區域來定。

高等數學,二重積分的極座標形勢的角度θ取值範圍如何決定的問題。 如圖兩個區間,請寫出他們的極座標

8樓:緋雪流櫻

求出它們的交點,然後根據θ=arctan(y/x)確定θ的積分限。如1交點為(1,1)和(-1,1),則積分限為(π/4,3π/4)。2交點為(31⁄2/2,1/2)和(-31⁄2/2,1/2),則積分限為(π/6,5π/6)。

二重積分,如圖。θ的範圍0到2π是怎麼來的?

9樓:萍蹤俠影

直角座標轉極座標,根據積分割槽域判定出來的

10樓:公可欣篤書

畫圖很重要,y的取值是從下到上,從左到右

二重積分範圍問題。如圖。這個範圍怎麼畫?

11樓:匿名使用者

如圖,陰影部分是積分割槽域

12樓:我政政

你好,很高興回答你的問題

二重積分問題,一個二重積分問題!!!!!!!!

因為這是一個二bai重積分,也du 就是對一個區域的 zhi積分。而x 2 y 2 4只是區域dao的邊界版,是一條曲線,如果將權x 2 y 2 4直接代入計算,就相當於忽略了在x 2 y 2 4範圍內的所有點。注 如果這道題改為曲線積分 x 2 y 2 dl,積分域l x 2 y 2 4,則可以把...

二重積分的乙個問題,二重積分問題?

關於x是奇函式,就是把y看成常數,實在理解不了,就把y看成是1,如z xy,看成z x,就是奇函式,z x 2 y,看成z x 2,就是偶函式,討論關於x是什麼函式,與y無關,討論關於y是什麼函式,與x無關。關於x是奇函式,把y看成常數,積分割槽域關於y軸對稱時,它的積分你可以按照定積分的方法理解,y...

高數,二重積分,高數中二重積分

這是我的理解 二重積分和二次積分的區別 二重積分是有關面積的積分,二次積分是兩次單變數積分。當f x,y 在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。可二次積分不一定能二重積分。如對 0,1 0,1 區域,對任意x 0,1 可定義一個對y連續的函式g x,y y...