高數,二重積分,高數中二重積分

2021-08-08 10:11:10 字數 1393 閱讀 3363

1樓:蛢西捌堪邦約

這是我的理解:

二重積分和二次積分的區別

二重積分是有關面積的積分,二次積分是兩次單變數積分。

①當f(x,y)在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。

②可二次積分不一定能二重積分。如對[0,1]*[0,1]區域,對任意x∈[0,1]可定義一個對y連續的函式g(x,y)(y∈[0,1])∫g(x,y)dy=1.那麼∫dx∫g(x,y)dy有意義,一般地∫∫g(x,y)dσ沒意義。

③可以二重積分不一定能二次積分。區域s=。恆等函式f(x,y)=1,(x,y)∈s。f在s上可以二重積分卻不能二次積分(先對x再對y求積分,在y=0那條線上積分無窮)。

積分對調

上面③的例子中積分對調了一個可以積分,一個不可以積分(先對y積分x固定時積分得到2/x^3.2/x^3對x(x屬於[1,無窮)可積分。

可對調x,y的情況是

連續且絕對可積,對x或y求分步積分存在。特殊情況函式在有界閉區域連續可對調x,y,這時由於連續性函式在閉區域存在極值。

積分變換一定要求變換後的積分割槽間與原來相同,且不能有重複積分的情況

2樓:匿名使用者

你畫一下積分域的草圖, 就知道應該是 ∫∫[(6-2x²-y²)-(x²+2y²)]dσ.

因為由拋物面 z = x^2+2y^2 和拋物面 z = 6-2x^2-y^2 圍成的立體是 :

z = 6-2x^2-y^2 在上,而 z = x^2+2y^2 在下。

求體積積分 : 上 - 下, 前 - 後, 右 - 左

高數中二重積分

3樓:紫月開花

這是bai我的理解:二重積分

和二次du積分的區別二重zhi積分是有關面積的dao積分,二次積版分是兩次單變數積分。 ①當權f(x,y)在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。

②可二次積分不一定能二重積分。如對[0,1]*[0,1]區域,對任意x∈[0,1]可定義一個對y連續的函式g(x,y)(y∈[0,1])∫g(x,y)dy=1.那麼∫dx∫g(x,y)dy有意義,一般地∫∫g(x,y)dσ沒意義。

③可以二重積分不一定能二次積分。區域s=。恆等函式f(x,y)=1,(x,y)∈s。

f在s上可以二重積分卻不能二次積分(先對x再對y求積分,在y=0那條線上積分無窮)。積分對調上面③的例子中積分對調了一個可以積分,一個不可以積分(先對y積分x固定時積分得到2/x^3.2/x^3對x(x屬於[1,無窮)可積分。

可對調x,y的情況是連續且絕對可積,對x或y求分步積分存在。特殊情況函式在有界閉區域連續可對調x,y,這時由於連續性函式在閉區域存在極值。積分變換一定要求變換後的積分割槽間與原來相同,且不能有重複積分的情況

高數二重積分,高數中二重積分

這是我的理解 二重積分和二次積分的區別二重積分是有關面積的積分,二次積分是兩次單變數積分。當f x,y 在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。可二次積分不一定能二重積分。如對 0,1 0,1 區域,對任意x 0,1 可定義一個對y連續的函式g x,y y ...

二重積分問題,一個二重積分問題!!!!!!!!

因為這是一個二bai重積分,也du 就是對一個區域的 zhi積分。而x 2 y 2 4只是區域dao的邊界版,是一條曲線,如果將權x 2 y 2 4直接代入計算,就相當於忽略了在x 2 y 2 4範圍內的所有點。注 如果這道題改為曲線積分 x 2 y 2 dl,積分域l x 2 y 2 4,則可以把...

二重積分與曲線積分割槽別,曲線積分與二重積分的區別

二重積分 抄d f u,v dudv 和 d f x,y dxdy 實際上bai是一樣的,只是改變了字母 du顯然在這個式子裡,二重zhi積分 d f u,v dudv 進行計算之後得到的是一個dao常數,不妨設其為a,即 f x,y xy a,現在將這個等式兩邊都在區域d上進行二重積分,即 d f...