誰懂不定積分,定積分,重積分,二重積分,三重積分

2021-03-03 23:37:01 字數 6080 閱讀 7757

1樓:匿名使用者

好,用圖形來說明(在直角平面座標系中的二次的曲線,在x軸上方)對這個二次函式f(x)在x軸上求積分,就是它和x軸的圍成圖面積。

對於不定積分,是不限定它在x軸上的範圍的,它表示的是一個動態的範圍,具體來說它是一個函式。

而定積分就是限定了一個範圍,比如(-8,6)內,這樣把數代進去就可以算出f(x),x=-8,x=6,和x軸這四條線圍成的面積了。

重積分,二重積分就是指一人二元的函式了,比如z=f(x,y),它是一個空間的立體圖形,它是x,y 平面內的投影的空間體積就是二重積分 。這個有點抽像,不太好說,如果 你確實要的話我可以細給你講一下

三重積分只有到四維空間才了形象的說,所以只有用數學思維想象出來了。它是用二重積分和積分類推出來。只有懂了積分,二重,三重不怕了。

這些可以運用到各個方面,比如 你要計算某個不規則物體的體積就可以啊, 很多方面都可以轉化成微積分的面積,體積思維來求,這就是它的大優點 。這種面積和體積是一種抽像的概念了,到了更多重積分又會有更多和意義。

定積分與二重積分,三重積分的區別與聯絡是什麼,急,**等 20

2樓:阿樓愛吃肉

定積分與二重積分、三重積分有3點不同

:一、三者的概述不同:

1、定積分的概述:定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

2、二重積分的概述:二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。

重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。

3、三重積分的概述:設三元函式f(x,y,z)在區域ω上具有一階連續偏導數,將ω任意分割為n個小區域,每個小區域的直徑記為rᵢ(i=1,2,...,n)。

體積記為δδᵢ,||t||=max,在每個小區域內取點f(ξᵢ,ηᵢ,ζᵢ),作和式σf(ξᵢ,ηᵢ,ζᵢ)δδᵢ,若該和式當||t||→0時的極限存在且唯一(即與ω的分割和點的選取無關);

則稱該極限為函式f(x,y,z)在區域ω上的三重積分,記為∫∫∫f(x,y,z)dv,其中dv=dxdydz。

二、三者的幾何意義不同:

1、定積分的幾何意義:表示平面圖形的面積。

2、二重積分的幾何意義:表示曲頂柱體體積。

3、三重積分的幾何意義:表示立體的質量。

三、三者的注意事項不同:

1、定積分的注意事項:一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

2、二重積分的注意事項:平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。

3、三重積分的注意事項:當積分函式為1時,就是其密度分佈均勻且為1,質量就等於其體積值。當積分函式不為1時,說明密度分佈不均勻。

定積分與二重積分、三重積分均是高等數學中重要內容,其中,定積分是學習二重積分、三重積分的基礎。

3樓:高數線代程式設計狂

問題很抽象。

從變數維度區分:

一般的定積分指的一元函式積分;二重積分是二元函式的積分,三重積分是三元函式的積分。

從幾何意義來說:

一般定積分是求面積;二重積分求曲頂柱體體積,三重積分求空間封閉區域體積

4樓:她鄉的**

從應用上來說,定積分用來算曲邊梯形面積;二重積分可以算空間旋轉體的面積於體積,我覺得二重積分其實是針對旋轉體的,因為空間體是三維的,需要xyz三個座標表示,但是旋轉體的特性便是根據xy平面上的旋轉面的資料就可以推算旋轉體的體積於面積,所以就有了二重積分。比如由直角三角形繞直角邊旋轉一週得到圓錐體的體積面積計算;三重積分就是來算二重積分無法計算的非旋轉體的體積。比如三菱錐。

討論定積分與二重積分,三重積分的共同點和不同點 100

5樓:阿樓愛吃肉

定積分與二重積分、三重積分三者均是高等數學中的積分內容,均具有廣泛的應用。定積分與二重積分、三重積分有3點不同:

一、三者的本質不同:

1、定積分的本質:平面的面積。

2、二重積分的本質:曲頂柱體體積。

3、三重積分的本質:三重積分就是立體的質量。

二、三者的概述不同:

1、定積分的概述:定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

2、二重積分的概述:二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。

3、三重積分的概述:設三元函式f(x,y,z)在區域ω上具有一階連續偏導數,將ω任意分割為n個小區域,每個小區域的直徑記為rᵢ(i=1,2,...,n),體積記為δδᵢ,||t||=max,在每個小區域內取點f(ξᵢ,ηᵢ,ζᵢ);

作和式σf(ξᵢ,ηᵢ,ζᵢ)δδᵢ,若該和式當||t||→0時的極限存在且唯一(即與ω的分割和點的選取無關),則稱該極限為函式f(x,y,z)在區域ω上的三重積分,記為∫∫∫f(x,y,z)dv,其中dv=dxdydz。

三、三者的幾何意義不同:

1、定積分的幾何意義:揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。

2、二重積分的幾何意義:在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

3、三重積分的幾何意義:當積分函式為1時,就是其密度分佈均勻且為1,質量就等於其體積值。當積分函式不為1時,說明密度分佈不均勻。

6樓:匿名使用者

定積分是求面積的,

二重、三重都是求體積的,

只不過定義上二重是通過給出面密度求體積,

而三重是通過體密度來求體積

二重和三重的主要區別就是積分域的區別,

二重積分的積分域是x、y的函式,也就是面

三重積分的積分域是x、y、z的函式,也就是體定積分:

二重積分:

三重積分:

7樓:匿名使用者

共同點:三者都可以求體積,都具有

8樓:女神也拉翔

共同點:都是積分

不同點:數字不一樣

簡述定積分,二重,三重積分的聯絡

9樓:匿名使用者

我把我以前答過的那篇文章拿出來了。

一重積分(定積分):只有一個自變數y = f(x)

當被積函式為1時,就是直線的長度(自由度較大)

∫(a→b) dx = l(直線長度)

被積函式不為1時,就是圖形的面積(規則)

∫(a→b) f(x) dx = a(平面面積)

另外,定積分也可以求規則的旋轉體體積,分別是

盤旋法(disc method):v = π∫(a→b) f²(x) dx

圓殼法(shell method):v = 2π∫(a→b) xf(x) dx

計算方法有換元積分法,極座標法等,定積分接觸得多,不詳說了

∫(α→β) (1/2)[a(θ)]² dθ = a(極座標下的平面面積)

二重積分:有兩個自變數z = f(x,y)

當被積函式為1時,就是面積(自由度較大)

∫(a→b) ∫(c→d) dxdy = a(平面面積)

當被積函式不為1時,就是圖形的體積(規則)、和旋轉體體積

∫(a→b) ∫(c→d) dxdy = v(旋轉體體積)

計算方法有直角座標法、極座標法、雅可比換元法等

極座標變換:{ x = rcosθ

{ y = rsinθ

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ

三重積分:有三個自變數u = f(x,y,z)

被積函式為1時,就是體積、旋轉體體積(自由度最大)

∫(a→b) ∫(c→d) ∫(e→f) dxdydz = v(旋轉體體積)

當被積函式不為1時,就沒有幾何意義了,有物理意義等

計算方法有直角座標法、柱座標切片法、柱座標投影法、球面座標法、雅可比換元法等

極座標變化(柱座標):{ x = rcosθ

{ y = rsinθ

{ z = z

{ h ≤ r ≤ k

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ

極座標變化(球座標):{ x = rsinφcosθ

{ y = rsinφsinθ

{ z = rcosφ

{ h ≤ r ≤ k

{ a ≤ φ ≤ b、最大範圍:0 ≤ φ ≤ π

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ

所以越上一級,能求得的空間範圍也越自由,越廣泛,但也越複雜,越棘手,而

且限制比上面兩個都少,對空間想象力提高了。

重積分能化為幾次定積分,每個定積分能控制不同的伸展方向。

又比如說,在a ≤ x ≤ b裡由f(x)和g(x)圍成的面積,其中f(x) > g(x)

用定積分求的面積公式是∫(a→b) [f(x) - g(x)] dx

但是升級的二重積分,面積公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被積函式變為1了

用不同積分層次計算由z = x² + y²、z = a²圍成的體積?

一重積分(定積分):向zox面投影,得z = x²、令z = a² --> x = ± a、採用圓殼法

v = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2

二重積分:高為a、將z = x² + y²向xoy面投影得x² + y² = a²

所以就是求∫∫(d) (x² + y²) dxdy、其中d是x² + y² = a²

v = ∫∫(d) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、這步你會發覺步驟跟一重定積分一樣的

= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2

三重積分:旋轉體體積,被積函式是1,直接求可以了

柱座標切片法:dz:x² + y² = z

v = ∫∫∫(ω) dxdydz

= ∫(0→a²) dz ∫∫dz dxdy

= ∫(0→a²) πz dz

= π • [ z²/2 ] |(0→a²)

= πa⁴/2

柱座標投影法:dxy:x² + y² = a²

v = ∫∫∫(ω) dxdydz

= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz

= 2π • ∫(0→a) r • (a² - r²) dr

= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)

= 2π • [ a⁴/2 - (1/4)a⁴ ]

= πa⁴/2

三重積分求體積時能用的方法較多,就是所說的高自由度。

既然都說了這麼多,再說一點吧:

如果再學下去的話,你會發現求(平面)面積、體積 比 求(曲面)面積的公式容易

學完求體積的公式,就會有求曲面的公式

就是「曲線積分」和「曲面積分」,又分「第一類」和「第二類」

當被積函式為1時,第一類曲線積分就是求弧線的長度,對比定積分只能求直線長度

∫(c) ds = l(曲線長度)

被積函式不為1時,就是求以弧線為底線的曲面的面積

∫(c) f(x,y) ds = a(曲面面積)

當被積函式為1時,第一類曲面積分就是求曲面的面積,對比二重積分只能求平面面積

∫∫(σ) ds = a(曲面面積)、自由度比第一類曲線積分大

∫∫(σ) f(x,y,z) ds,物理應用、例如曲面的質量、重心、轉動慣量、流速場流過曲面的流量等

而第二類曲線積分/第二類曲面積分以物理應用為主要,而且是有"方向性"的,涉及向量範圍了。

定積分 二重積分 三重積分 曲線積分 曲面積分之間有什麼內在

曲線積分分為空間曲線積分和平面曲線積分,它的積分是沿曲線內進行的,因為計算容時可以將積分曲線的表示式代入被積式。平面曲線積分用格林公式溝通了與二重積分的聯絡,而二重積分卻是在整個積分面進行的,不能將積分表示式代入被積式。曲面積分用斯托克斯公式溝通了與三重積分的聯絡,前者是在曲面上進行的積分,而後者則...

二重積分與曲線積分割槽別,曲線積分與二重積分的區別

二重積分 抄d f u,v dudv 和 d f x,y dxdy 實際上bai是一樣的,只是改變了字母 du顯然在這個式子裡,二重zhi積分 d f u,v dudv 進行計算之後得到的是一個dao常數,不妨設其為a,即 f x,y xy a,現在將這個等式兩邊都在區域d上進行二重積分,即 d f...

為什麼不存在二重不定積分為什麼不存在二重不定積分

一元函bai數的積分是在實數區間內du定義的,而實zhi數是dao有序域,取它的任何一個子專區間都屬會存在兩個有大小順序的邊界點,這兩個邊界點內的任意兩個點也是有序的。所以只要有了不定積分,選取一個區間就能確定出一個定積分,反過來說一元函式存在一個對任給區間都通用的不定積分。而二重積分定義在二維平面...