對於含引數的導數,判斷單調性時,怎麼進行分類討論

2021-03-10 18:20:19 字數 3472 閱讀 9480

1樓:賽爾號異能王

並不是說所有含引數的導數在判斷原來函式的單調性的時候都要進行分類討內論,數學中的分類容討論一直是為了解決問題的手段而不是目的。就拿你提出的含參導數判斷原函式單調性進行分類討論這個問題,只有在這個引數的範圍內導數有的時候為正,有的時候為負即影響到原函式的單調性的時候才需要進行分類討論。

舉個例子:f(x)=alnx,f'(x)=a/x。

解:x恆大於0,而a可以取到一切實數,這個時候注意到當a>0時,f'(x)>0,f(x)單調增;當a<0時,f'(x)<0,f(x)單調減;當a=0時,f'(x)=0,f(x)=0是常函式,不增不減。a的取值影響了f'(x)的正負,無法將不同情況下f(x)所呈現出的不一樣的增減性用一種情況來概括,此時,就需要分類討論。

但是如果題目中寫明f(x)=alnx,a>1,那麼此時f'(x)>0在a>1的範圍內恆成立,在題設條件下f(x)一直是單調增的,沒有必要進行不同情況下反映出的同種結果的說明。

當需要解決的問題出現多種不一樣的情況時,進行分類討論的原因僅僅只是因為無法用一種片面的結果來代替整個問題的解決方案。

2樓:匿名使用者

將含引數的函式化為分段函式, 再討論。請用具體題目提問。

3樓:捶綠篩榮葟

判斷臨界點吧,根據定義域,或者出現分數函式時,可以根據分子分母什麼時為0具體判斷。

高等數學中的函式如何學習

4樓:匿名使用者

要學好高等數

學的函式,首先了解高等數學的特點。高等數學有三個顯著的特點:高度的抽象性;嚴謹的邏輯性;廣泛的應用性。

( 1 )高度的抽象性

數學的抽象性在簡單的計算中就已經表現出來。我們運用抽象的數字,卻不是每次都把它們同具體的物件聯絡起來。在數學的抽象中只留下量的關係和空間形式,而捨棄了其他一切。

它的抽象程度大大超過了自然科學中一般的抽象。

( 2 )嚴謹的邏輯性

數學中的每一個定理,不論驗證了多少例項,只有當它從邏輯上被嚴格地證明了的時候,才能在數學中成立。在數學中要證明一個定理,必須是從條件和已有的數學公式出發,用嚴謹的邏輯推理方法匯出結論。

( 3 )廣泛的應用性

高等數學具有廣泛的應用性。例如,掌握了導數概念及其運演算法則,就可以用它來刻畫和計算曲線的切線斜率、曲線的曲率等等幾何量;就可以用它來刻畫和計算速度、加速度、密度等等物理量;就可以用它來刻畫和計算產品產量的增長率、成本的下降率等等經濟量; …… 。掌握了定積分概念及其運演算法則,就可以用它來刻畫和計算曲線的弧長、不規則圖形的面積、不規則立體的體積等等幾何量;就可以用它來刻畫和計算變速運動的物體的行程、變力所做的功、物體的重心等等物理量;就可以用它來刻畫和計算總產量、總成本等等經濟量。

高等數學既為其它學科提供了便利的計算工具和數學方法,也是學習近代數學所必備的數學基礎。瞭解了這些就能學好高等數學的函式了。

5樓:匿名使用者

函式考察的題目有以下幾點:

1、定義域

2、值域

3、最值(最大最小)

4、圖象對稱

5、交點

6、平移

而最難的屬於後面3個,因此學習高中函式一定要掌握數學的重要思想,那就是數形結合,幾個典型的函式的圖象一定要牢牢掌握,對於快速而準確的解決問題有非常大的幫助,遇到什麼難題,我們可以共同**一下。

6樓:沙漠射手

我覺得數學學習沒有什麼特別好的拌飯 就是多做題 題做多了 自然就會總結出規律

在學高等數學之前,要學習多少種函式

7樓:我愛文文

正比例函式,一次函式,反比例函式,二次函式,銳角三角函式,這是讀高中前所學的所有函式。

8樓:匿名使用者

加減乘除,乘方開方,對數,指數,冪,極限,導數,微分積分,好像高等數學也就只涉及到這幾種運算了

9樓:藍翼臣

高等數學其實不難

我現在就在自學

只要你有毅力堅持

完全不需要什麼函式

有不懂的再去看那函式的介紹

我現在初三,學著不很難,

你也學高數啊,呵呵,哥哥還是弟弟...?

10樓:36寸液晶

要學習高中課本上的一次函式、二次函式、三角函式、反三角函式、指數函式、對數函式。

高等數學函式?

11樓:匿名使用者

兩邊對 x 求導, 得 f'(x) = 0, 則 f(x) = c

c = c1(b-a)c + c2 , c[1-c1(b-a)] = c2

c = c2/[1-c1(b-a)], f(x) = c2/[1-c1(b-a)]

12樓:心飛翔

對於反函式,原函式的值域是反函式的定義域

高等數學函式的奇偶性判斷

13樓:匿名使用者

(復1).e^(-1/x2)是偶函式

制,x是奇函式,所以xe^(-1/x2)是奇函式,而arctanx也是奇函式,所以f(x)=xe^(-1/x2) +arctanx是奇函式;(2).xsinx是偶函式,1+x2也是偶函式,所以f(x)=(xsinx)/(1+x2)也是偶函式;(3).f(x)=(e^x-1)/(e^x+1)=1-2/(e^x+1),f(-x)=1-(2e^x)/(e^x+1),而f(-x)+f(x)=0可知f(x)= - f(-x),所以f(x)為奇函式.

14樓:西域牛仔王

^f(x) = xln[(1+x)/(1-x)] ,baif(-x) = -xln[(1-x)/(1+x)] = xln[(1+x)/(1-x)] = f(x),

因此是偶函式。

du中間

zhi用了對數法dao則:專lnx^n = nlnx 。這裡屬 (1-x)/(1+x) = [(1+x)/(1-x)] ^ -1 。

高等數學函式?

15樓:t稻草人

對於反函式,原函式的值域是反函式的定義域

16樓:匿名使用者

y=√(x+1),定義域:x∈[-1,+∞);值域:y∈[0,+∞);

反函式:y=x²-1;定義域:x∈[0,+∞);值域:y∈[-1,+∞);

17樓:老黃的分享空間

反函式的定義域就是原函式的值域,是由原函式決定的,而不是由反函式本身的性質決定的。你所給的定義域針對反函式本身,而題目中給出的定義域受原函式的值域限制,所以它的對你的錯。

高等數學函式?

18樓:匿名使用者

y=(x-1)/(x+1)=1-2/(x+1)2/(x+1)=1-y

x+1=2/(1-y)

x=2/(1-y)-1

顯然定義域是y≠1啊

怎麼利用導數判斷函式的單調性,用導數怎麼來判斷函式的單調性

1 先求出函式的導數f x 2 分類討論f x 大於0還是小於0 大於0就在定義域內單調遞增,小於0則單調遞減 注意 題中定義域的範圍 去書上認認真真看看,會有的 用導數怎麼來判斷函式的單調性 先寫出原 來函式的定義域,自 然後對原函式求導,令導數大於零,反解出x的範圍,該範圍即為該函式的增區間,同...

如何用導數求函式的單調性和單調區間(簡單點的)

求出定義域內導數值等於0的點 駐點 及不可導的點,如兩者均不存在,則函式是單調函式 求出極值點 判斷駐點及不可導點左右一階導數值的正負有無變化,有為極值點 左 右 為極小值點,左 右 為極大值點 無,則不是極值點。也可以通過求二階導數 一階導數再對x求導 來判斷 將駐點值代入,求出駐點處的二階導數值...

函式的單調性與導數的解題方法QAQ求助

g 1 0 g 3 0,則g x 在 1,3 有零點,例如若g x 有一個零點為a,則g x 在 1,a 增 在 a,3 減。再如下圖x0,h x 單增,a若h x 在 1,3 非單調,則h 1 0 h 3 0,當然這只是必要條件。並不充分。如h x 在 1,5 非單調,並不是h 1 0 h 5 0...