1樓:匿名使用者
y=(x-5)(2-x)
=-(x-5)(x-2)
對稱軸:x=-b/(2a)=(5+2)/2=7/2當x<7/2時,單調遞增
當x≥7/2時,單調遞減
2樓:匿名使用者
y=-(x-5)(x-2)=-(x²-7x+10)=-(x-7/2)²+9/4
∴y在(-∞,7/2)上單調遞增,在(7/2,+∞)上單調遞減
3樓:冥王鼬鼬
2和5是二次函式的兩個零點。根據對稱性顯然頂點在x=3.5處。因為開口象下,所以x<3.5時單調增,x>3.5時單調減
4樓:永強
函式變形為y=-(x-7/2)^2+9/4,可以畫出圖形,x軸過(2,0),(5,0),拐點(7/2,9/4)
所以x<=2.5時單調遞增,x>2.5時單調遞減
5樓:匿名使用者
由來y=(x-5)(2-x)
=-x²+7x-10
=-(源x²-7x+3.5²)+3.5²-10=-(x-3.5)²+2.25.
由條件:(1)開口向bai下,
du(2)對稱軸
zhix=3.5,
(3)x∈(dao-∞,3.5)單調增加,x∈(3.5,+∞)單調減少。
求函式單調性的基本方法?
6樓:nice千年殺
一般是用導數法。對f(x)求導,f』(x)=3x²-3=3(x+1)(x-1)
令f』(x)>0,可得到單調遞增區間(-∞,-1)∪(1,+∞),同理單調遞減區間[-1,1]
複合函式還可以用規律法,對於f(g(x)),如果f(x),g(x)都單調遞增(減),則複合函式單調遞增;否則,單調遞減。口訣:同增異減。
還可以使用定義法,就是求差值的方法。
拓展資料
導數:導數是變化率、是切線的斜率、是速度、是加速度;導數是用來找到「線性近似」的數學工具;導數是線性變換,這是導數的三重認識,定義是函式值的變化量比上自變數的變化量。
7樓:安貞星
1、導數法
首先對函式進行求導,令導函式等於零,得x值,判斷x與導函式的關係,當導函式大於零時是增函式,小於零是減函式。
2、定義法
設x1,x2是函式f(x)定義域上任意的兩個數,且x1<x2,若f(x1)<f(x2),則此函式為增函式;反知,若f(x1)>f(x2),則此函式為減函式.
3、性質法
若函式f(x)、g(x)在區間b上具有單調性,則在區間b上有:
① f(x)與f(x)+c(c為常數)具有相同的單調性;
②f(x)與c•f(x)當c>0具有相同的單調性,當c<0具有相反的單調性;
③當f(x)、g(x)都是增(減)函式,則f(x)+g(x)都是增(減)函式;
④當f(x)、g(x)都是增(減)函式,則f(x)•g(x)當兩者都恆大於0時也是增(減)函式,當兩者都恆小於0時也是減(增)函式;
4、複合函式同增異減法
對於複合函式y=f [g(x)]滿足「同增異減」法(應注意內層函式的值域),令 t=g(x),則三個函式 y=f(t)、t=g(x)、y=f [g(x)]中,若有兩個函式單調性相同,則第三個函式為增函式;若有兩個函式單調性相反,則第三個函式為減函式。
拓展資料:
函式的定義:
給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。假設b中的元素為y。
則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。
函式單調性的定義:
一般的,設函式y=f(x)的定義域為a,i↔a,如對於區間內任意兩個值x1、x2,
1)、當x12)、當x1>x2時,都有f(x1)>f(x2),那麼就說y=f(x)在區間i上是單調減函式,i稱為函式的單調減區間。
8樓:飄雪啊
1. 定義法:證明函式
單調性一般用定義,如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。
2.性質法: 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法(同增異減。)
3. 高三選修課本有導數及其應用,用導數求函式的單調區間一般是非常簡便的。
函式的定義:給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。
假設b中的元素為y。則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。
函式的單調性就是隨著x的變大,y在變大就是增函式,y變小就是減函式,具有這樣的性質就說函式具有單調性,符號表示:就是定義域內的任意取x1,x2,且x1<x2,比較f(x1),f(x2)的大小,影象上看從左往右看影象在一直上升或下降的就是單調函式。
常用方法:
1.導數
2.構造基本初等函式(已知單調性的函式)
3.複合函式:根據同增異減口訣,先判斷內層函式的單調性,再判斷外層函式單調性,在同一定義域上,若兩函式單調性相同,則此複合函式在此定義域上為增函式,反之則為減函式。
4.定義法
5.數形結合
6.複合函式的單調性一般是看函式包含的兩個函式的單調性:
(1)如果兩個都是增的,那麼函式就是增函式;
(2)一個是減一個是增,那就是減函式 ;
(3)兩個都是減,那就是增函式。
9樓:匿名使用者
一、相減法。即判斷f(x1)-f(x2)(其中x1和x2屬於定義域,假設x1,若該式小於零,則在定義域內函式為增函式。(要注意的是在定義域內,函式既可能為增函式,也可能為減函式,具體情況要看求出來的x的範圍,注意不等式的解答時不要錯。
)拿你舉的例子來說:
首先,確定函式的定義域:r.
第二步,令x10,則得到的x的區間為f(x)的單調遞增區間。(其原因你畫下影象就很明顯了).
拿你的例子來說吧。
第一步還是確定定義域:為r. 第二步求導,為f(x)』=3x^2-3。
第三步,求區間:令f(x)』>0有x>1或x<-1,所以f(x)的增區間為(1,正無窮)和(負無窮,-1);令f(x)』<=0,有-1<=x<=1,所以f(x)的減區間為[-1,1]。端點取在哪兒都可以,連續函式的話不影響其單調性。
最後總結一下即可。
10樓:匿名使用者
1. 把握好函式單調性的定義。證明函式單調性一般(初學最好用定義)用定義(謹防迴圈論證),如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。
另外還請注意函式單調性的定義是[充要命題]。
2. 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法:同增異減。
3. 高三選修課本有導數及其應用,用導數求函式的單調區間一般是非常簡便的。 還應注意函式單調性的應用,例如求極值、比較大小,還有和不等式有關的問題。
定義法的基本步驟:
一般的,求函式單調性有如下幾個步驟:
1、取值x1,x2屬於,並使x1 2、作差f(x1)-f(x2) 3、變形 4、定號(判斷f(x1)-f(x2)的正負) 5、下結論 常用方法: 1.導數 2.構造基本初等函式(已知單調性的函式) 3.複合函式:根據同增異減口訣,先判斷內層函式的單調性,再判斷外層函式單調性,在同一定義域上,若兩函式單調性相同,則此複合函式在此定義域上為增函式,反之則為減函式。 4.定義法 5.數形結合 6.複合函式的單調性一般是看函式包含的兩個函式的單調性:(1)如果兩個都是增的,那麼函式就是增函式;(2)一個是減一個是增,那就是減函式 ;(3)兩個都是減,那就是增函式 11樓:你的甜甜一笑 1. 把握好函式單調性的定義。證明函式單調性一般(初學最好用定義)用定義(謹防迴圈論證),如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。 另外還請注意函式單調性的定義是[充要命題]。 2. 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法:同增異減。 12樓:匿名使用者 求導數判斷導數的正負 兄弟採納一下,我就可以升級了謝謝 13樓: 是有求導公式的,比如你的x^3,x的n次方的求導公式是x^n=nx^(n-1)。 14樓:匿名使用者 利用求導的方法 f(x)』=3x^2-3<0 -1 所以x在(-1,1)之間為減 也可以用代數法 這樣簡單明瞭 就是慢點 15樓:匿名使用者 利用求導的方法 f(x)』=3x^2-3<0 -1 所以x在(-1,1)之間為減函式 16樓:匿名使用者 就你這水平,回家吃屎去吧! 求函式f(x)=(x-1)(x^2/3)的單調區間與極值點 17樓:demon陌 ^f極小值=f[-(2/5)^1/2] f極大值=f[(2/5)^1/2] 先求導數 f'(x)=x^(2/3)+2(x-1)/(3*x^(1/3))=[ x+5x/3-2/3] /(x^(1/3))令f'(x)=0,得x=2/5 (1)在x>0時, 當0當x>2/5時,f'(x)>0,f(x)單調增所以x=2/5為極大值點。 (2)在x<0時,f'(x)>0,f(x)單調增,又原函式在x=0處有定義且連續,因此在x=0處有極大值點。 18樓: ^是x的2/3次方還是x的平方除以3呀? 以x的2/3次方來求解。 先求導數 f'(x)=x^(2/3)+2(x-1)/(3*x^(1/3))=[ x+5x/3-2/3] /(x^(1/3))令f'(x)=0,得x=2/5 (1)在x>0時, --當0--當x>2/5時,f'(x)>0,f(x)單調增所以x=2/5為極大值點。 (2)在x<0時, --f'(x)>0,f(x)單調增 又原函式在x=0處有定義且連續,因此在x=0處有極大值點。 影象如圖所示: 19樓:匿名使用者 f極小值=f[-(2/5)^1/2] f極大值=f[(2/5)^1/2] 函式單調性的定義
10 20樓:匿名使用者 函式bai的單調性就是隨著x的變大,duy在變大就是增函zhi數,y變小就是減dao函式,具 內有這樣的性質就說容函式具有單調性,符號表示:就是定義域內的任意取x1,x2,且x1<x2,比較f(x1),f(x2)的大小,影象上看從左往右看影象在一直上升或下降的就是單調函式 (或f(x1) 21樓:紫蝶珊 函式復的單調性 設函式f(x)的定製義域為 baid,區間 i包含於d。如du果對於區間i上任意兩點zhix1及x2,當x1恆有f(x1)dao稱函式f(x)在區間i上是單調增加的;如果對於區間i上任意兩點x1及x2,當x1f(x2),則稱函式f(x)在區間i上是單調減少的。單調增加和單調減少的函式統稱為單調函式。 f x x 1 x 在整個定義域內不是單調的,用定義證明要分情況討論 要分為四個區間,x 1 1 1 你就知道怎麼判斷了 如果你學過導數,這題目用導數求解單調性比較好要是證明題應該在某個區間證單調性 針對 這個 x1 x2 1 x1 x2 是怎麼分出那四種情況的呢?我不太理解額,麻煩啦,再講 答 如... 像這種分式函式,來定義域一般都是自不取0的全體實數 解 取x1 x2 則 f x1 f x2 2 x1 1 2 x2 1 2 1 x2 1 x1 2 x1 x2 x1x2 其中,x1 x2 0。而x1 x2在同號時,x1x2 0所以,2 x1 x2 x1x2 0 所以,f x1 f x2 0,則f ... y x du3 3x 2 5 y 3x 2 6x 3x x 2 令y 0 得駐點 x 0,x 2 增區間 zhi dao0 回 2,減區間 0,2 極大值 f 0 5,極小值答 f 2 9y 6x 6 令y 0 得x 1凸區間 1 凹區間 1,拐點 1,7 求函式f x x的3次方減3x的單調性,凹...判斷證明函式f x x 1 x的單調性
判斷函式fx2x1的單調性,並根據定義進行證明
求函式y x的3次方 3x的平方 5的單調性凹凸性極值拐點