1樓:匿名使用者
函式的單調性也叫函式的增減性.函式的單調性是對某個區間而言的,它是一個回區域性概念.
⒈ 增函式與減函答數
一般地,設函式f(x)的定義域為i:
如果對於屬於i內某個區間上的任意兩個自變數的值x1、x2,當x1<x2時都有f(x1)<f(x2).那麼就說f(x)在 這個區間上是增函式。
如果對於屬於i內某個區間上的任意兩個自變數的值x1、x2,當x1<x2時都有f(x1)>f(x2).那麼就是f(x)在這個區間上是減函式。
⒉ 單調性與單調區間
若函式y=f(x)在某個區間是增函式或減函式,則就說函式在這一區間具有(嚴格的)單調性,這一區間叫做函式的單調區間.此時也說函式是這一區間上的單調函式。
在單調區間上,增函式的影象是上升的,減函式的影象是下降的。
注:在單調性中有如下性質
↑(增函式)↓(減函式)
↑+↑=↑ ↑-↓=↑ ↓+↓=↓ ↓-↑=↓
2樓:貓貓肚皮
單調性就是:在一個區間內,要麼為增函式,要麼為減函式。不存在即有增也有減得情況。
比如y=x^2在(負無窮,0]具有單調性,是單調遞增,則在(負無窮,正無窮)不具備單調性,因為既有增也有減。
3樓:鋒亦知
單調性就是函式隨某個變數的增大而增大(單調遞增),增大而減小(單調遞減)!例如y=x就是單調遞增函式,y隨x的增大而增大!反之y=-x在(正數範圍)就是單調遞減
4樓:匿名使用者
通俗的講就是在某個區間內函式值隨自變數的增大而增大叫單調遞增,隨自變數的增大而減小叫單調遞減。
高一數學中的函式單調性是指什麼
5樓:手機使用者
複合法:用來求複合函式的單調性,就是那個同增異減的
導數法:求出原函式的導數,若導數》0,則是增,反之則減
函式的單調性是研究當自變數x不斷增大時,它的函式y增大還是減小的性質.如函式單調增表現為「隨著x增大,y也增大」這一特徵.與函式的奇偶性不同,函式的奇偶性是研究x成為相反數時,y是否也成為相反數,即函式的對稱性質.
函式的單調性與函式的極值類似,是函式的區域性性質,在整個定義域上不一定具有.這與函式的奇偶性、函式的最大值、最小值不同,它們是函式在整個定義域上的性質.
函式單調性的研究方法也具有典型意義,體現了對函式研究的一般方法.這就是,加強「數」與「形」的結合,由直觀到抽象;由特殊到一般.首先借助對函式圖象的觀察、分析、歸納,發現函式的增、減變化的直觀特徵,進一步量化,發現增、減變化數字特徵,從而進一步用數學符號刻畫.
函式單調性的概念是研究具體函式單調性的依據,在研究函式的值域、定義域、最大值、最小值等性質中有重要應用(內部);在解不等式、證明不等式、數列的性質等數學的其他內容的研究中也有重要的應用(外部).可見,不論在函式內部還是在外部,函式的單調性都有重要應用,因而在數學中具有核心地位.
教學的重點是,引導學生對函式在區間(a,b)上「隨著x增大,y也增大(或減小)」這一特徵進行抽象的符號描述:在區間(a,b)上任意取x1,x2,當x1<x2時,有 f(x2)>f(x1)(或f(x2)<f(x1)),則稱函式f(x)在區間(a,b)上單調增(或單調減).
二.目標和目標解析
本節課要求學生理解函式在某區間上單調的意義,掌握用函式單調性的定義證明簡單函式在某區間上具有某種單調性的方法(步驟).
1.能夠以具體的例子說明某函式在某區間上是增函式還是減函式;
2.能夠舉例,並通過繪製圖形說明函式在定義域的子集(區間)上具有單調性,而在整個定義域上未必具有單調性,說明函式的單調性是函式的區域性性質;
3.對於一個具體的函式,能夠用單調性的定義,證明它是增函式還是減函式:在區間上任意取x1,x2,設x1<x2,作差f(x2)-f(x1),然後判斷這個差的正、負,從而證明函式在該區間上是增函式還是減函式.
三.教學問題診斷分析
6樓:永不言棄絕
要麼遞增,要麼遞減.....要麼是增函式,要麼是減函式......
高一數學類,高一數學必修一函式單調性的幾大類問題
x 2 2xy 4y 2 0 x y 2 5y 2 0 x y v5y x y v5y 0 x 1 v5 y 或者x 1 v5 y x 1 v5 y x y x y v5 2 v5 x 1 v5 y x y x y v5 2 v5 x y x y 1 y x 1 y x 令y x m 0,上式 1 ...
高一數學。。關於函式單調性中作差環節
當然有辦法拉。首先是偶函式,因此我們只要研究 0,無窮 就可以了在 0,無窮 是單調遞增的,根據偶函式對稱,在 無窮,0 是單調遞減。設x1 x2 0 2 x1 2 x2 1 f x1 f x2 2 x1 2 x1 2 x2 2 x2 2 x1 2 x2 1 2 x1 1 2 x2 2 x1 2 x...
高一數學。急,高一數學,急求解
1.既是偶函式x r,f 1 f 1 則1 2 1 a 1 1 2 1 a 1 1 a 1 a a 0 2.令log以a為底x的對數 t x a tf t a a 2t 1 a t a 2 1 a a t 1 a t a 2 1 f x a a x 1 a x a 2 1 定義域 x 0 f x f...