1樓:淡淡幽情
(1)若0同號
bai若a,b同為+,兩du邊除以
zhib得:a<1/b
若a,b同為-,兩邊除以a得:b>1/a
所以由dao"0能推出"a<1/b或b>1/a」,"01/a」的回充分條答
件(2)
由"a<1/b或b>1/a」不能推出"01所以"01/a」的必要條件
綜上所述"01/a」的充分不必要條件
若a,b為實數,則「0<ab<1」是「b<1/a」的___條件。求詳解,謝謝!
2樓:窩巢真赤激
首先0<ab<1 有可能a和b都為負數 因此推不出b<1/a然後b<1/a 因為a有可能是負數 因此也推不出0<ab<1
綜上 是既不充分也不必要條件求採納
3樓:匿名使用者
既不充分也不必要。首先看出貌似是必要條件,後好像可以推前,但是後面對b沒有不等於0的要求,前面則必須有,所以也不是必要條件。
4樓:在下神坑
充分不必要。鑑定完畢
設a,b是兩個n階方陣,若ab=0,則必有 a.a=0或b=0 b.|a|=0或|b|=0 為什麼,求詳解,急
5樓:匿名使用者
比方說下面的兩個矩陣
a:1 0 0
0 0 0
0 0 0
b:0 0 0
0 0 0
0 0 1
根據矩陣乘法計算可知ab=
0 0 0
0 0 0
0 0 0
即ab=0矩陣成立
但是a和
b都不是0矩陣,版因為a和b都有非0的元素。權所以a選項不對。
而對於方陣而言,有|ab|=|a||b|成立即ab的行列式等於a的行列式乘b的行列式。
而行列式是數值,數值乘法就滿足|a||b|=|ab|=|0矩陣|=0,則|a|=0或|b|=0成立。
所以b選項正確。
已知a,b是實數,則la|<=1 lb|<=1 (1) |a+b|<=1 (2) |a-b|<=1 10
6樓:匿名使用者
∵直線bail1:(
2a+3)x+(a-1)y+3=0與dul2:(a+2)x+(zhi1-a)y-3=0平行, ∴(dao2a+3)(
專1-a)-(a-1)(a+2)=0,整屬理可得(1-a)[(2a+3)-(a+2)]=(1-a)(a+1)=0,解得a=1或a=-1 經檢驗當a=1或a=-1時,都有兩直線平行,故選:d
7樓:prince張佳樂
(1)當a=-2,b=3,滿bai足a+b=1,但是其絕對值du均zhi大於1,條件一不充分dao
(2)當a=3,b=2,滿足版a-b=1,但是其絕對值均大權於1,條件二不充分
(3)條件一和條件二合併,-1≤a+b≤1,-1≤a-b≤1,以a為縱軸,以b為橫軸畫圖,發現充分。
故選擇c
8樓:匿名使用者
用反證法:copy
假設同時大於1/4
則bai (1-a)b*(1-b)c*(1-c)a>=1/64即 (1-a)a*(1-b)b*(1-c)c>=1/64由基本不等du式知
(1-a)a<=1/4,(1-b)b<=1/4,(1-c)c<=1/4
三式相乘,得(1-a)a*(1-b)b*(1-c)c<=1/64 與上zhi面矛盾
假設不成立dao
9樓:匿名使用者
假設:(1-a)b,(1-b)c,(1-c)a同時大於1/4
∵(1-a)b>
1/4 b<1 ∴a>3/4
同理b>3/4
c>3/4
但是當a>3/4,c>3/4時
(1-c)a<3/16<1/4
與假設相矛盾專 故假設不成立
即 (1-a)b,(1-b)c,(1-c)不能同時大於屬1/4
10樓:匿名使用者
^用反證法證明。假設三個式子同時大於1/4首先利用不等式公示 (x+y)/2≥(xy)^0.5即算術平均內值大容於或等於幾何平均值。可以得到
(1-a+b)/2≥((1-a)b)^0.5>1/2,由此可推出 b>a,有其他兩個式子得出 c>b 和 a>c 由此矛盾得解
(說明 條件所給的a b c 取值可保證1-a等都大於0 解題時要說明)
a,b,c>0,a+b+c=1,求證a/(b+c)+b/(a+c)+c/(a+b)≥1/2
11樓:匿名使用者
(a-b)/c+(b-c)/a+(c-a)/b
=[(a-b)ab+(b-c)bc+(c-a)ca]/(abc)
=[(a^2 b - ab^2)+(b^2 c - bc^2)+(c^2 a-ca^2)]/(abc)
=[ab(a-b)+(b^2 c - a^2 c) + (c^2 a - c^2 b)]/(abc)
=(a-b)(ab-ac-bc+c^2)/(abc)
=-(a-b)(b-c)(c-a)/(abc).(*)
設a-b=x,b-c=y,c-a=z,則x+y+z=0,
x-y=a-2b+c=-3b,y-z=b-2c+a=-3c,z-x=-3a
c/(a-b)+a/(b-c)+b/(c-a)
=[(y-z)/x+(z-x)/y+(x-y)/z](-1/3)
=-(x-y)(y-z)(z-x)/(xyz) * (-1/3).(類似*的證明)
=-(-3a)(-3b)(-3c)*(-1/3)/[(a-b)(b-c)(c-a)]
=-9abc/[(a-b)(b-c)(c-a)]
故[(a-b)/c+(b-c)/a+(c-a)/b)][c/(a-b)+a/(b-c)+b/(c-a)]=9
思路其實就是分別化簡兩個式子,看起來挺複雜,寫起來挺多,其實算一下就會發現第一個式子的形式看起來很好,同理算得第二個式子.沒試過直接相乘和其他方法,感覺也可以做.
若a>b>0,c<d<0,則一定有( ) a.a/c>b/d b.a/c<b/d
12樓:哦是壊舒舒
d,可得,
∣a∣>∣b∣
∣c∣>∣d∣
所以∣a∣/∣d∣>∣b∣/∣c∣,
又,a,b>0,c,d<0
得a/d,b/c<0
所以a/d
13樓:匿名使用者
a>b>0
-c>-d>0
所以-ac>-bd
ac a/d
14樓:江南卿十二 選擇題的話令a=2,b=1,c=-2,d=-1。帶入試試就能選出d了。 即 由a2 b2 1,可得a2 1 b2 1,即 a 1,同理,可得,b 1.即a2 b2 1能推出 a 1,b 1,而由 a 1,b 1,不能推出a2 b2 1,比如,取a b 3 4,可得,a2 b2 9 8 1,故a2 b2 1 是 a 1,b 1 的充分不必要條件.故選a 已知a,b r 則... 12.5 你說的用柯西不等式,我水平較低,只能將其與函式兩者參半,不能全用,你別介意啊 a 1 a 2 b 1 b 2 2 a 1 a b 1 b a b,或ab 1時成立 2 ab 1 ab 2 a b b a時,等式成立 由此等當a b時,整個等式同時成立 a 1 a 2 b 1 b 2 2 a... 把根號下a 1 2 根號下b 1 2完全平方,得到 a 1 2 b 1 2 根號內 a 1 b 1 a 1 2 b 1 2 a b 2 2 3 2根號內 a 1 b 1 根號內 ab a b 1 根號內 ab 2 而由a b 1可以求出ab的最小值為1 4。a 1 2 b 1 2 2 a 1 2 b...若ab為實數,則a2b21是a1,b
已知a0,b0,a b 1,則 a 1 a 的平方 b 1 b 的平方的最小值是多少 有過程獎分
a大於等於0 b大於等於0 a b 1則根號下a