1樓:
圓盤(x-2)^2+y^2≤1繞y軸旋轉所成的旋轉體體積為4π^2。
解:因為由(x-2)^2+y^2=1,可得,
x=2±√(1-y^2)。
又(x-2)^2+y^2≤1,那麼可得1≤x≤3,-1≤y≤1。
那麼根據定積分求旋轉體體積公式,以y為積分變數,可得體積v為,
v=∫(-1,1)(π*(2+√(1-y^2))^2-π*(2-√(1-y^2))^2)dy
=8π∫(-1,1)√(1-y^2)dy
令y=sint,由於-1≤y≤1,那麼-π/2≤t≤π/2,那麼
v=8π∫(-1,1)√(1-y^2)dy
=8π∫(-π/2,π/2)costdsint
=4π∫(-π/2,π/2)(cos2t+1)dt
=4π∫(-π/2,π/2)1dt+2π∫(-π/2,π/2)(cos2t)d(2t)
=4π*(π/2-(-π/2))+2π*(sinπ-sin(-π))
=4π^2+0
=4π^2
擴充套件資料:
1、定積分∫(a,b)f(x)dx的性質
(1)當a=b時,∫(a,b)f(x)dx=0。
(2)當a>b時,∫(a,b)f(x)dx=-∫(b,a)f(x)dx。
(3)常數可以提到積分號前。即∫(a,b)k*f(x)dx=k*∫(a,b)f(x)dx。
2、定積分的解答方法
(1)換元積分法
如果f(x)∈c([a,b]),且x=ψ(t)在[α,β]上單值、可導,那麼當α≤t≤β時,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,則∫(a,b)f(x)dx=∫(α,β)f(ψ(t))*ψ′(t)dt。
(2)分部積分法
設u=u(x),v=v(x)均在區間[a,b]上可導,且u′,v′∈r([a,b]),則有分部積分公式為,
∫(a,b)uv′dx=uv(a,b)-∫(a,b)vu′dx。
3、利用定積分求旋轉體的體積
(1)找準被旋轉的平面圖形,它的邊界曲線直接決定被積函式。
(2)分清端點。
(3)確定幾何體的構造。
(4)利用定積分進行體積計算。
2樓:北
據對稱性,所求旋轉體體積是上半圓盤繞y軸旋轉所成的旋轉體體積v1的2倍,因此
v=2(∫10
πx22(y)dy?∫10
πx21(y)dy)
=2π∫
π/20
(2+cost)
costdt?2π∫
π/2π
(2+cost)
costdt
=2π∫π0
(2+cost)
costdt=4π2.
3樓:榕花麗潔心
上半圓:y1=2+√(1-x²); 下半圓:y2=2-√(1-x²);
v=2[∫π*y1²dx - ∫π*y2²dx](上式 上限為1,下限為-1)
=4*π* ∫[ (2+√(1-x²))² - (2-√(1-x²))² ]dx
(上式 上限為1,下限為0,以下相同)
=16*π*∫√(1-x²)dx
令x=sint dx=cost dt(以下式子上限為π/2,下限為0)
∴v=16*π*∫cos²tdt
=8*π*∫(cos2t+1)dt 二倍角公式=4*π*∫cos2t d(2t) + 8*π*∫dt=4*π²
求圓盤(x-2)^2+y^2<=1繞y軸旋轉一週所得旋轉體的體積? 用積分的方法!
4樓:裘珍
解:見下圖:這是用微元面積與旋轉半徑x*2π之積,用的是周長公式;考慮到圖形以x軸為對稱。用半圓做積分。√√√√
v=4π∫(1,3)xydx=4π∫(1,3)x√[1-(x-2)^2dx
=-2π∫(1,3)[(x-2)+2]√[1-(x-2)^2]d[1-(x-2)^2]
=-2π(2/3)√[1-(x-2)^2]^3](1,3)+8π∫(1,3)√[1-(x-2)^2d(x-2)
=0+4π(1,3)
=4π[0+arcsin1-arcsin(-1)]=4π[π/2-(-π/2)]=4π^2
5樓:可可西里洪世賢
體積相當於是 圓盤外圍轉一圈-圓盤與y軸夾的那部分轉一圈
6樓:970334725李
直接可以用圓心乘以圓心旋轉距離,公式!!
7樓:匿名使用者
該旋轉體就是一個圓環的形狀,求體積元dv可以用截面s乘以弧元dl,然後對sdl沿著圓周求積分得v=∫dv=∫sdl,由於s是常量,所以v=s*∫dl=s*2πr=π*4π=4π²。
求圓盤(x-2)^2 y^2=1繞y軸旋轉而成旋轉體的體積
8樓:洪範周
(x-2)^2 y^2=1——有沒有錯?
(x-2)^2+ y^2=1——是這個吧?
繞y軸旋轉而成旋轉體的體積=38.90 表面積=78.48 如圖所示:
求(x-2)^2+y^2=1繞y軸旋轉所得的旋轉體的體積。
9樓:匿名使用者
如圖所示:
這裡有兩個方法,柱殼法和圓盤法。
y cosx,X22與x軸所圍成圖形繞Y軸旋轉一週所成的旋轉體的體積
這個體積等於2 xcosx在 0,2 上的定積分,答案是2 2 1 2 2到0 tdsint 2 tsint 2到0 2到0 sintdt 2到0 sintdt 2 2 1 餘弦定理,歐氏平面幾何學基本定理。餘弦定理是描述三角形中三邊長度與一個角的餘弦值關係的數學定理,是勾股定理在一般三角形情形下的...
已知x2 2y 2 1,求2x 5y 2的最大值和最小值
我暈.有必要樓上那麼麻煩麼.因為x 2 2y 2 1 所以y 2 1 x 2 2 把原式的y替換成1 x 2 2 原式 2x 5 5x 2 2 5x 2 2 2x 5 2 因為x 2 2y 2 1 所以 1 x 1 在一個區間內求函式的最值這個你會的 答案和樓上一樣 因為x2 2y 2 1 這裡的x...
已知橢圓x 2 2 y 2 1和點M 3,0 ,N
過點n做切線交橢圓點x,y,xny大於或等於 anb,xny 2 xn0 計算一下是多少 肯定小於90度 所以 anb不可以是鈍角 是 amb吧 已知橢圓x 2 3 y 2 1 過m 1,0 的直線l與橢圓c相交於a,b兩點,設點n 3,2 記直線an,bn的斜率k1,k2 證明 設過m的直線 y ...