如圖二次函式Y ax bx c的圖象與X軸交於A B兩點

2021-06-27 22:10:43 字數 2709 閱讀 4732

1樓:匿名使用者

(1)拋物線的解析式為y=-x2+4x+5;(2)△mcb的面積為15.

分析:(1)由a、c、d三點在拋物線上,根據待定係數可求出拋物線解析式;

(2)把bc邊上的高和邊長求出來,就可以得出面積.解:(1)∵a(-1,0),c(0,5),d(1,8)三點在拋物線y=ax2+bx+c上,

則有0=a-b+c

5=c8=a+b+c

解方程得a=-1,b=4,c=5所以拋物線解析式為y=-x2+4x+5.

(2)∵y=-x2+4x+5

=-(x-5)(x+1)

=-(x-2)2+9

∴m(2,9),b(5,0)

即bc=根號25+25 =根號50 ,由b、c兩點座標得直線bc的解析式為:l:x+y-5=0,則點m到直線bc的距離為d=

|2+9-5| /根號2 =3根號2

,則s△mcb=

1 /2 ×bc×d=15.

2樓:匿名使用者

解:(1)∵a(-1,0),c(0,5),d(1,8)三點在拋物線y=ax2+bx+c上,則有0=a-b+c

5=c8=a+b+c

解方程得a=-1,b=4,c=5所以拋物線解析式為y=-x2+4x+5.

如圖,二次函式y=ax2+bx+c的圖象與x軸交於a,b兩點,其中點a(-1,0),點c(0,5),點d(1,8)都在拋

3樓:匿名使用者

(1)根據題意得

a?b+c=0

c=5a+b+c=8,解得

a=?1

b=4c=5

,所以二次函式解析式為y=-x2+4x+5;

(2)y=-x2+4x+5=-(x-2)2+9,則m點座標為(2,9),

設直線mc的解析式為y=mx+n,

把m(2,9)和c(0,5)代入得

2m+n=9

n=5,

解得m=2

n=5(3)把y=0代入y=2x+5得2x+5=0,解得x=-52,

則e點座標為(-5

2,0),

把y=0代入y=-x2+4x+5得-x2+4x+5=0,解得x1=-1,x2=5,

所以s△mcb=s△mbe-s△cbe=12×15

2×9-1

2×15

2×5=15.

已知:如圖,二次函式y=ax²+bx+c的影象與x軸交於a,b兩點,與x軸交於c點,其中a點座標為

4樓:嶺下人民

解:1),因為ob,oc是x²-10x+16=0的兩根,且ob<oc,所以ob=2,oc=8.。即b(2,0),c(0,8),因為a(-6,0),a,b,c都是拋物線上的點,所以拋物線的解析式可設為y=a(x+6)(x-2).

把c點座標代入,得a=-2/3,,函式的解析式為y=-2/3x²-8/3x+8;2),因為s△abc=1/2aboc=32,s△aec=1/2aeoc=4m,由於ef∥ac所以△bef∽△bac, s△bef/s△bac=(be/ab)²,=(8-m)²/64所以s△bef=(8-m)²/2.。 所以s△cef=s△abc-s△aec-s△ebf=-1/2m²+4m (-6≤m≤2); 3),顯然s=-1/2m²+4m=-1/2(m-4)²+8,當m=4是有最大值,其最大值為s=8..此時e(-2,0)。

在△bce中,eo=bo, oc⊥be,所以△bce是等腰三角形。

已知:如圖,二次函式y=ax²+bx+c的影象與x軸交於a,b兩點,其中a點座標為

5樓:匿名使用者

解:⑴∵二次函式y=ax²+bx+c的影象經過(﹣1,0),(0,5),(1,8),

∴a-b+c=0

c=5a+b+c=8

解得a=﹣1,b=4,c=5

∴拋物線的解析式為y=﹣x²+4x+5

⑵解﹣x²+4x+5=0即x³-4x-5=0得x=﹣1或x=5∴拋物線y=﹣x²+4x+5交x軸於a﹙﹣1,0﹚,b﹙5,0﹚∵y=﹣x²+4x+5=-﹙x-2﹚²+9∴拋物線y=-﹙x-2﹚²+9的頂點為m(2,9)作mn⊥x軸於n(2,0﹚

6樓:star我的小破孩

設a(m,0),b(n,0),c(0,c)由題意知ab=√(20^2+15^2)=25∴c=20*15/25=12

則oa=√(20^2-12^2)=16即m=-16,ob=√(15^2-12^2)=9即n=9,

把m,n,c代入原方程得a=-1/12,b=7/12∴原方程為-1/12x^2+7/12x+12

已知:如圖,二次函式y=ax2+bx+c的圖象與x軸交於a、b兩點,其中a點座標為(-1,0),點c(0,5),另拋物

7樓:小柒

(1)依題意:自

a?b+c=0

a+b+c=8

c=5,

解得a=?1

b=4c=5

∴拋物線的解析式為y=-x2+4x+5

(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1,∴b(5,0).

由y=-x2+4x+5=-(x-2)2+9,得m(2,9)作me⊥y軸於點e,

可得s△mcb=s梯形meob-s△mce-s△obc=12(2+5)×9-1

2×4×2-1

2×5×5=15.

如圖,二次函式y x2 bx c的圖象經過座標原點,與x軸

1 拋物線y x2 bx c經過座標原點和點a 2,0 c 0 0 4 2b c,b 2c 0 拋物線的解析式為 y x2 2x 2 y x2 2x,y x 1 2 1 b 1,1 s aob 1 2 2 1 1 答 oab的面積為1 如圖,拋物線y x bx c經過座標原點,並與x軸交於點a 2,...

二次函式y ax bx c的影象如圖所示,下列結

正確的有 abc 0 2a b 0 a b c 0 a b c 0開口向上,a 0 對稱軸x b 2a 0,得b 0 x 0時,y c 0 得 1 正確 對稱軸x b 2a 得 1 b 2a 0 b 2a,得 2 正確 當x 1時,y a b c 0 得 3 正確當x 1時,y a b c 0,得 ...

2019日照如圖,二次函式yx2bxc的圖象與x

1 將a 3,0 d 2,3 的座標代入y x2 bx c得,9?3b c 0 4?2b c 3 解得 b 2c 3,專y x2 2x 3 由x2 2x 3 0,得 x1 3,x2 1,b的座標是 1,0 設直屬線bd的解析式為y kx b,則 k b 0 2k b 3 解得 k 1b 1 2 直線...