在周長相等的長方形正方形圓形中誰的面積最大

2021-08-10 21:33:08 字數 5696 閱讀 4006

1樓:橘落淮南常成枳

圓的面積最大。

長方形的面積為:長×寬、周長為2×(長+寬);正方形的面積為:邊長的平方、周長為4×變長;圓的面積為π×半徑的平方、周長為2π×半徑。

如此一來。現設周長為單位1,那麼長方形的話,長+寬=1/2,如果長是1/3,那麼寬則是1/6,面積為1/18,而正方形的話,變長為1/4,面積為1/16。可以證明相同周長下,正方形的面積總會比長方形的面積大。

最後比較圓與正方形的面積,同樣是利用單位1。圓的半徑是1/(2π),那麼面積是1/(4π),正方形的面積上面已算為1/16,因為知道4π小於16,作為分母,因此1/(4π)大於1/16。

2樓:

設三者的周長均為m,則:

正方形:邊長=m/4,其面積=(m/4)^=m^/16

圓:2πr=m

===>r=m/(2π),其面積=πr^=π*[m/(2π)]^=m^/(4π)

長方形的邊長分別為a、b(a≠b)

則,a+b=m/2

又由於a+b>2√(ab)

===>ab<(m/4)^=m^/16

即,長方形面積=ab

所以,面積最大是圓,面積最小是長方形。

1、半圓的面積:s半圓=(πr^2)/2。(r為半徑)。

2、圓環面積:s大圓-s小圓=π(r^2-r^2)(r為大圓半徑,r為小圓半徑)。

3、圓的周長:c=2πr或c=πd。(d為直徑,r為半徑)。

4、半圓的周長:d+(πd)/2或者d+πr。(d為直徑,r為半徑)。

5、扇形弧長l=圓心角(弧度制)×r= nπr/180(θ為圓心角)(r為扇形半徑)

6、扇形面積s=nπ r²/360=lr/2(l為扇形的弧長)

7、圓錐底面半徑 r=nr/360(r為底面半徑)(n為圓心角)

於無窮多個小扇形面積的和,所以在最後一個式子中,各段小弧相加就是圓的周長2πr,所以有s=πr²。

3樓:匿名使用者

假設半圓半徑 = r

圓面積 = 3.14 r^2

圓周長 = 3.14 * 2r = 6.28r正方形邊長 = 1.57r

正方形面積 = 2.46 r^2

長方形面積 = (1.57r + a) * (1.57r - a) = 2.46 r^2 - a^2

圓 > 正方形 > 長方形

周長相等的圓正方形和長方形哪個面積大

4樓:小小芝麻大大夢

圓的面積最大。

長方形的面

積為:長×寬、周長為2×(長+寬);正方形的面積為:邊長的平方、周長為4×變長;圓的面積為π×半徑的平方、周長為2π×半徑。

如此一來。現設周長為單位1,那麼長方形的話,長+寬=1/2,如果長是1/3,那麼寬則是1/6,面積為1/18,而正方形的話,變長為1/4,面積為1/16。可以證明相同周長下,正方形的面積總會比長方形的面積大。

最後比較圓與正方形的面積,同樣是利用單位1。圓的半徑是1/(2π),那麼面積是1/(4π),正方形的面積上面已算為1/16,因為知道4π小於16,作為分母,因此1/(4π)大於1/16。

5樓:武府小道

相同周長的圓和正方形比,圓的面積大.

證明:設周長為c

取正方形,邊長=c/4

正方形面積為:c²/16

取圓,半徑=c/2π

圓面積為:c²/(4π)= c²/12.56c²/16 <c²/12.56

分母小的面積大.

所以圓的面積大.

6樓:匿名使用者

正方形的面積更大。

可通過以下計算進行驗證:

1、假設長方形(正方形)的周長為2z,那麼長a+b可以表示為a+b=z;

2、長方形的面積等於長乘以寬,即:s=ab=a×(z-a)=-a²-az。

3、s=-a²-az=-(a-z/2)²+x,當a=z/2時,函式有最大值,此時a=b,即該四邊形為正方形時面積有最大值。

擴充套件資料:

正方形的性質:

1、兩組對邊分別平行;四條邊都相等;鄰邊互相垂直。

2、四個角都是90°,內角和為360°。

3、對角線互相垂直;對角線相等且互相平分;每條對角線平分一組對角。

4、既是中心對稱圖形,又是軸對稱圖形(有四條對稱軸)。

5、正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,對角線與邊的夾角是45°;正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。

6、正方形具有平行四邊形、菱形、矩形的一切性質與特性。

7、在正方形裡面畫一個最大的圓(正方形的內切圓),該圓的面積約是正方形面積的78.5%[4分之π]; 完全覆蓋正方形的最小的圓(正方形的外接圓)面積大約是正方形面積的157%[2分之π]。

8、正方形是特殊的矩形,正方形是特殊的菱形

7樓:吳文

圓的半徑 : 62.8/(2*3.14)=10正方形的

邊長 : 62.8/4 =15.7

圓的面積 =3.14*10^2=314 (平方釐米 )正方形的面積 =15.7^2=246.49(平方釐米)所以 ,圓的面積大 .

8樓:匿名使用者

在周長相等的情況下:圓面積》正方形的面積》長方形的面積周長相等時,等邊的圖形中正多邊形面積最大.

而所有的周長相等的正多邊形中變數越多面積越大所以長方形《正方形《圓

設三者的周長均為m,則:

正方形:邊長=m/4,其面積=(m/4)^=m^/16圓:2πr=m ===>r=m/(2π),其面積=πr^=π*[m/(2π)]^=m^/(4π)

長方形的邊長分別為a、b(a≠b)

則,a+b=m/2

又由於a+b>2√(ab) ===>ab<(m/4)^=m^/16即,長方形面積=ab

所以,面積最大是圓,面積最小是長方形

9樓:陽光語言矯正學校

隨便找一個數字假設為周長,然後根據三個公式,求出面積。對比後,是圓的面積最大。

舉例:如三角形、正方形、圓在周長均為12

1.三角形(拿等邊三角形為例):3x=12,則邊長為4,高為2倍根號3,面積為4倍根號3

2.正方形:邊長為3,面積為9

3.圓:2∏r=12,則r=∏分之6,則面積為=∏分之36故:周長相等的情況下:圓面積》正方形面積》三角形面積稍繁一點的

首先證明在邊數相等的情況下正多邊形的面積最大——比如若兩相鄰的邊不等,容易證明在保持長度和不變的情況下一旦將它們換成相等時,比原面積要大,所以面積最大的是正多邊形.然後證明邊數約大面積越大,方法是將正多邊形像切蛋糕那樣從中心點切成一片一片三角形,每一個三角形的面積等於邊長乘以中心到邊的距離除以2,於是整個多邊形的面積等於周長乘以中心到邊的距離除以2,周長一定時,中心到邊的距離越長,面積越大.可證,邊長越多時中心到邊的距離越大,因為中心到邊的距離為cot2pi/2n * c/2n,分別代入n和n'後相除比較大小即可,當邊長趨於無窮時,中心到邊的距離趨近於中心到頂點的距離,這時候面積是最大的.

10樓:檸梔小姐

圓的面積最大,利用公式,設周長為單位1,那麼長方形的話,長+寬=1/2,如果長是1/3,那麼寬則是1/6,面積為1/18,而正方形的話,變長為1/4,面積為1/16。可以證明相同周長下,正方形的面積總會比長方形的面積大。

再比較圓與正方形的面積,設周長為單位1。圓的半徑是1/(2π),那麼面積是1/(4π),正方形的面積上面已算為1/16,因為知道4π小於16,作為分母,因此1/(4π)大於1/16。

11樓:仍有呀

周長相同時,平行四邊形,長方形,正方形,圓的面積哪個大?

12樓:深圳冠亞水分儀科技

設周長為

1,圓的半徑為r,正方形的邊長為a,則

2πr=1=4a,及r=2a/π

圓的面積為πr²=π(2a/π)²=4a²/π≈1.27a²正方形的面積為a*a=a²<4a²/π

故圓的面積大

13樓:匿名使用者

周長相等,正方形圓形和長方形哪個面積最大?

周長相等,圓的面積最大。

正方形的面積次之。

在這三者中,長方形的面積最小。

14樓:a菜菜

圓的周長c=2πr,推導得r=c/2π,圓的面積s=πr²=π(c/2π)²=π·c²/4π²=c²/4π

正方形周長c=4a,推導得a=c/4,正方形面積s=a²=(c/4)²=c²/16

因為周長c相等,而4π小於16,根據分子相同,分母小的反而大可得c²/4π大於c²/16

所以周長相等的圓和正方形,圓的面積大

15樓:堅果它媽

在長方形、正方形、圓的周長相等的情況下,圓的面積最大。

16樓:匿名使用者

圓的面積大。

17樓:匿名使用者

圓的面積最大;

正方形次之;

長方形最小。

證明:圓的周長c=2πr,

r=c/2π

圓s=π(c/2π)^2=c^2/4π

正方形的邊長a=c/4

s正=c^2/16

4π<16

所以c^2/4π>c^2/16即圓的面積大於正方形的面積。

18樓:魯飆營霞姝

假設周長都為4a,則正方形

面積=a² 園的半徑=4a÷(2π)=2a÷π園的面積=π×(2a÷π)²=4a²÷π>a²所以 周長相同的園面積比正方形面積大。

周長相等的長方形正方形和圓誰面積最大,誰面

19樓:陽光語言矯正學校

隨便找一個數字假設為周長,然後根據三個公式,求出面積。對比後,是圓的面積最大。

舉例:如三角形、正方形、圓在周長均為12

1.三角形(拿等邊三角形為例):3x=12,則邊長為4,高為2倍根號3,面積為4倍根號3

2.正方形:邊長為3,面積為9

3.圓:2∏r=12,則r=∏分之6,則面積為=∏分之36故:周長相等的情況下:圓面積》正方形面積》三角形面積稍繁一點的

首先證明在邊數相等的情況下正多邊形的面積最大——比如若兩相鄰的邊不等,容易證明在保持長度和不變的情況下一旦將它們換成相等時,比原面積要大,所以面積最大的是正多邊形.然後證明邊數約大面積越大,方法是將正多邊形像切蛋糕那樣從中心點切成一片一片三角形,每一個三角形的面積等於邊長乘以中心到邊的距離除以2,於是整個多邊形的面積等於周長乘以中心到邊的距離除以2,周長一定時,中心到邊的距離越長,面積越大.可證,邊長越多時中心到邊的距離越大,因為中心到邊的距離為cot2pi/2n * c/2n,分別代入n和n'後相除比較大小即可,當邊長趨於無窮時,中心到邊的距離趨近於中心到頂點的距離,這時候面積是最大的.

20樓:厭食是家人

圓的面積最大。

長方形的面積為:長×寬、周長為2×(長+寬);正方形的面積為:邊長的平方、周長為4×變長;圓的面積為π×半徑的平方、周長為2π×半徑。

如此一來。現設周長為單位1,那麼長方形的話,長+寬=1/2,如果長是1/3,那麼寬則是1/6,面積為1/18,而正方形的話,變長為1/4,面積為1/16。可以證明相同周長下,正方形的面積總會比長方形的面積大。

最後比較圓與正方形的面積,同樣是利用單位1。圓的半徑是1/(2π),那麼面積是1/(4π),正方形的面積上面已算為1/16,因為知道4π小於16,作為分母,因此1/(4π)大於1/16。

長方形與正方形的周長相等,長方形的寬比長少5 4 那麼這個長方形的面積與正方形的面級之比是多少

設正方形邊長為x 則長方形周長 正方形周長 4x由長方形的寬比長少五分之四得 設長方形長為y 則寬為y 1 4 5 1 5y 可得 y 1 5y 2 4x 得 y 5 3x所以長方形寬為1 5y 1 5 5 3x 1 3x所以長方形面積為 1 3x 5 3x 5 9 x的平方正方形面積為x的平方 所...

周長相等的正方形和長方形誰的面積大?為什麼

正方形的大。正方形的面積公式為 邊長 邊長,長方形的面積公式為 長 寬,長方形和正方形的比較 因為兩個數的和為定值,只有兩個數相同時他們的積最大,所以正方形的面積要大於長方形。所以周長相等的這四個,正方形的面積最大。例如 正方形面積 3 3 9,周長3 4 12長方形面積 4 2 8,周長 4 2 ...

正方形,長方形,圓的面積相等,誰的周長最短

因為長方形,正方形和圓的面積相等,所以每個圖形所含單位方就相等。在每個圖形所含單位方相等的情況下,由於每個圖形上面所用的外圍單位方的數量不同,所以外圍單位方越多,周長就越大 外圍單位方越少,周長就越小。也就是說 當無限無窮小的單位方化為點時,每個圖形的外圍點越多,每個圖形的周長就越大。如 16個單位...