1樓:大可
簡單應用題,一步的加減乘除
和差問題
和倍問題
差倍問題
植樹問題等
2樓:匿名使用者
我記憶中小學應用題就是時間、速度、路程這類的
3樓:匿名使用者
主要有:和倍問題,差倍問題,盈虧問簡單應用題,一步的加減乘除和差問題
和倍問題
差倍問題
植樹問題等
題,行程問題。
4樓:匿名使用者
主要有:和倍問題,差倍問題,盈虧問題,行程問題。
5樓:傾聽風的聲音吧
加減乘除,分配,結合,交換法等,,,,,。
6樓:匿名使用者
每份數,剩餘,和差,總數
7樓:匿名使用者
ky 可以自己去翻書看看嘛
8樓:旁才敬中
還原問題:已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關係。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
置換問題:題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
盈虧問題(盈不足問題):題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的餘數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。
其計算方法是:
當一次有餘數,另一次不足時:
每份數=(餘數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大餘數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
年齡問題:年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
雞兔問題:已知雞兔的總只數和總足數,求雞兔各有多少隻的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
公約數、公倍數問題:運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
分數應用題:指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
工程問題:它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關係進行解答:
工作效率×工作時間=工作量
工作量÷工作時間=工作效率
工作量÷工作效率=工作時間?
看在我寫這麼多得份上
..採納我得了..
小學6年級數學應用題,小學六年級數學應用題
將甲乙兩堆煤運走後的數量看作單位1 那麼甲堆煤原來有1 1 1 3 3 2乙堆煤原來有1 1 40 5 3 原來一共有煤3 2 5 3 9 6 10 6 19 6所以甲乙運走後各剩76 19 6 24噸。甲原來有煤24 3 2 36噸。乙堆原來有煤76 36 40噸。甲x2x 3 19x 15 x ...
小學數學六年級應用題
1.一個數的40 比它的一半少15,求這個數。2.紅旗小學師生幫助公園鋪草坪。計劃9天鋪216平方米,實際每天比原計劃多鋪平方米。實際用幾天完成任務?原 216 9 24 現 24 216 天。3.六年級共有學生350人,選出16名男生和20名女生參加比賽,剩下的男女生人數相等。六年級有男生 女生各...
數學應用題(列式計算),小學四年級數學應用題,用解題思路並分步列式計算,越詳細越好
1,8000 2 25 3 40 1240人,2,20 20 3.14 1 0.4 753.6平方釐米3,1200 7 4 400 鯉魚苗 400 7 2800條 鯽魚苗 400 4 1600條 4,甲用後有 45 1 1 5 36千克既是乙筐用去7分之1後有36千克 36 1 1 7 42千克 1...