1樓:匿名使用者
1的3次方加2的3次方加3的3次方+…………+n的三次方=[n*(n+1)/2]^2
n*(n+1)=240
n=15
2樓:匿名使用者
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
1^3+2^3+...+n^3=[n(n+1)/2]^2
則1/4*240^2=120^2=[n(n+1)/2]^2
則=[n(n+1)/2]=120
則n=15
3樓:匿名使用者
因為 1³ + 2³ + 3³ + ... + n³ = [n(n + 1)/2]² = [n(n + 1)²]/4
所以n(n + 1) = 240
n = 15 (n = -16 捨去)
所以 n = 15
4樓:
看了各位的回答,長知識了
數1的3次方 2的3次方 3的3次方 4的3次方 5的3次方2019的3次方的個位數是幾
n zhi3 n n 1 n 2 3n n 1 n 1 4 n n 1 n 2 n 3 n 1 n n 1 n 2 n n 1 n 2 n 1 n n 1 1 2 n n 1 n 1 n 1 dao3 2 3 n 3 1 4 n n 1 n 2 n 3 n n 1 n 2 1 2 n n 1 1 4...
1的1次方2的2次方3的3次方4的4次方9的
數目太多i,所 以建議你各個分析。首先是1,除以3餘 1 2除以3餘2,2的平方回是4,除以3餘1 3除以3餘0,則3的任答何次方除以3餘0 4除以3餘1,則4的4次方 3 1 的四次方,除以3餘1 5除以3餘2,則5的5次方 3 2 的五次方,除以3餘2的五次方 以此類推 然後把九個餘數的和在除以...
三的 2次方乘 3分之1的 3次方加五的 4次方乘0 2的 5次方怎麼做
原式 3的 2次方x 3 的3次方 5的 4次方x5的5次方 3 5 2 你好,本題已解答,如果滿意 請點右上角 採納答案 2的負5次方乘0.5的負4次方加3的2次方乘3分之一的負3次方等於多少啊 0.5等於2的負一次方,3分之一等於3的負一次方。因此原式可化為2的 1 5 4 次方加3的5 2 3...