1樓:匿名使用者
還是等於0向量
0向量乘以任何實數,都等於0向量。
0乘向量0=向量0還是等於0?
2樓:唐唐小韓
等於向量0,向量之積得實數,而向量與實數相乘仍然得向量!
3樓:匿名使用者
向量與向量相乘為實數,向量與實數相乘為向量所以等於向量0
零向量mod(模)等回於零的答向量叫做零向量,記作0,注意零向量的方向是任意的。但我們規定:零向量的方向與任一向量平行。但零向量不與任一向量垂直。
零向量可以有很多方向 卻只有一個長度
1.a+o=a
2.a·o=o·a=o
(以上是用粗體表示向量)
已知兩個非零向量a=(x1,y1),b=(x2,y2),則有a·b=x1x2+y1y2,即兩個向量的數量積等於它們對應座標的乘積的和。
兩向量相乘等於-1和0分別是什麼意思?
4樓:解蕊慎水
數學性質
作為自然數,0既不是素數也不是合數
平方數0是偶數。
0的相反數和絕對值是其本身。
0乘以任何實數都等於0,0加上任何實數等於其本身。
0沒有倒數和負倒數,一個非0的數除以0無意義,0除以0有無窮多個解。
0的正數次方等於0,0的0和負數次方無意義。
0不能做對數的底數和真數。
0的0次方是未定義的,但有時亦採用為1其值。
0既不是正數,也不是負數,它是正、負數的界限,表示「基準」的數,零不是表示「沒有」,它表示一個實際存在的數量.正整數、負整數、正分數、負分數和0統稱有理數.
除以0的問題
1.0不能做除數的原因
(1)0不能做除數的數學原因:
*1如果除數是0,被除數是非零自然數時,商不存在。這是由於任何數乘0都不會得出非零自然數。
*2如果被除數、除數都等於0,在這種情況下,商不唯一,可以是任何數。這是由於任何數乘0都等於0。
(2)0不能做除數的物理原因:
一個正整數x
(被除數)除以另一個正整數n(除數)意味著將被除數等分n
份後每一份的大小。
除以0的物理意義就是要把一個物體等分成0份,也就是將一個存在的物體完全消滅,使它在宇宙中消失.但是,在一般的物理電學計算中,把0一般當作無限小.
愛因斯坦相對論向我們揭示了物質和能量的關係,這個理論說明整個宇宙中的物質和能量是守恆的,根本不可能將一個物體完全毀滅,有時候一個物體看起來消失了,其實是轉化成了能量。
除以0從物理意義看違背質能量守恆定理。
2.假設除以0有意義的推斷
1/0的大小的推斷
若除以0是有意義的,那麼
是多大呢?
如果1除以一個越來越小的正數,得到的是一個越來越大的正數。
1/0.1=10
1/0.01=100
1/0.001=1000
…...
也就是說若
1/n=y
n>0y>0當n越趨近於0,
y越來越大。
同理,如果1除以一個越來越大的負數,得到的是一個越來越小的負數。
1/-0.1=-10
1/-0.01=-100
1/-0.001=-1000
…...
也就是說若
1/n=y
n<0y<0當n越趨近於0,
y越來越小。
不過當n=0
時,y並不等於正無窮或負無窮
(從正負兩個不同角度推得)
1/0這個數大於無限大,1/0小於無限小,1/0是一個極限數。這個極限數1/0
是極限大也是極限小,是所有實數中最大的數也是最小的,極限大和極限小統一於1/0。
1、阿拉伯數字。
2、是0與2之間的自然數。
3、奇數
。4、最小的正整數。
5、第二小的自然數。
6、既不是素數,也不是合數。
7、任何數除以1都等於本身。
8、兩個互質的數最小公因數是1。小寫:
1漢語拼音寫:一大寫
:壹英語:one(基數詞,一)
first(序數詞,第一)
進位制計數符號
羅馬數字
1二進位制11
十六進位制
1八進位制
1一個或者幾個事物所組成的整體,可以看作是單位"1".
在計算器科學中,1經常用於表現--的「真」值。
在電腦科學中,1經常用於表現布林值的「真」值。
在幾何光學中,真空的折射率是1。
在天文學中,太陽與地球間之平均距離為1個天文單位。
一次函式:自變數x和因變數y有如下關係:
y=kx+b
(k為任意不為零實數,b為任意實數)
則此時稱y是x的一次函式。
牛頓第一運動定律:一切物體在沒有受到外力作用的時候,總保持勻速直線運動狀態或靜止狀態。
一切物體總保持勻速直線運動狀態或靜止狀態,直到有不平衡的外力迫使它改變這種狀態。
5樓:羅峰
向量相乘等於-1意思是兩個向量平行但方向相反,
向量相乘等於0意思是兩個向量垂直。
補充:向量
在數學與物理中,既有大小又有方向的量叫做向量(亦稱向量),在數學中與之相對應的是數量,在物理中與之相對應的是標量。向量,最初被應用於物理學。很多物理量如力、速度、位移以及電場強度、磁感應強度等都是向量。
向量定義
向量數學中,既有大小又有方向且遵循平行四邊形法則的量叫做向量(vector)。有方向與大小,分為自由向量與固定向量。
自由向量只確定於方向與大小,而不在意位置,例如平行四邊形abcd中,向量ab=向量dc,就是指的自由向量。幾何中的向量,多為自由向量。
固定向量確定於方向與大小,以及起點位置。例如力學中的作用力就是固定向量。
數學中,把只有大小但沒有方向的量叫做數量,物理中常稱為標量。例如距離、質量、密度、溫度等。
("a1"的"1"為a的下標,"ai"的"i"為a的下標,其他類推)。
在程式語言中,也存在向量的說法。
表達方式
1.代數表示:一般印刷用黑體小寫字母α、β、γ…或a、b、c… 等來表示,手寫用在a、b、c…等字母上加一箭頭表示。
2.幾何表示:向量可以用有向線段來表示。
有向線段的長度表示向量的大小,向量的大小,也就是向量的長度。長度為0的向量叫做零向量,記作0。長度等於1個單位的向量,叫做單位向量。
箭頭所指的方向表示向量的方向。(若規定線段ab的端點a為起點,b為終點,則線段就具有了從起點a到終點b的方向和長度。這種具有方向和長度的線段叫做有向線段。
)[3]
3.座標表示:
1) 在平面直角座標系中,分別取與x軸、y軸方向相同的兩個單位向量i,j作為一組基底。a為平面直角座標系內的任意向量,以座標原點o為起點作向量op=a。由平面向量基本定理知,有且只有一對實數(x,y),使得a=向量op=xi+yj,因此把實數對(x,y)叫做向量a的座標,記作a=(x,y)。
這就是向量a的座標表示。其中(x,y)就是點p的座標。向量op稱為點p的位置向量。
向量2) 在立體三維座標系中,分別取與x軸、y軸,z軸方向相同的3個單位向量i,j,k作為一組基底。若a為該座標系內的任意向量,以座標原點o為起點作向量op=a。由空間基本定理知,有且只有一組實數(x,y, z),使得a=向量op=xi+yj+zk,因此把實數對(x,y, z)叫做向量a的座標,記作a=(x,y, z)。
這就是向量a的座標表示。其中(x,y, z),也就是點p的座標。向量op稱為點p的位置向量。
3) 當然,對於多維的空間向量,可以通過類推得到,此略。
6樓:梓小新
如果是平面直角座標系,對於向量(a,b)和向量(c,d),把這兩個向量相乘就是ab+cd,因為a.b.c.
d可正可負可為零,所以這兩個向量相乘的結果就可以為任何實數,舉個例子:(1,-2)乘(2,1)的結果就是(1×2)+(-2×1)=0,這兩個向量相乘就等於零。純手打望採納
兩向量相乘等於-1和0分別是什麼意思?
7樓:是你找到了我
向量相乘等於-1表示兩
個向量平行但方向相反;
向量相乘等於0表示兩個向量垂直。
在數學中,向量是具有大小和方向的量。可以形象化地表示為帶箭頭的線段。箭頭所指:
代表向量的方向;線段長度:代表向量的大小。與向量對應的量叫做數量(物理學中稱標量),數量(或標量)只有大小,沒有方向。
向量的記法:印刷體記作黑體(粗體)的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。 如果給定向量的起點(a)和終點(b),可將向量記作ab(並於頂上加→)。
在空間直角座標系中,也能把向量以數對形式表示,例如xoy平面中(2,3)是一向量。
8樓:羅峰
向量相乘等於-1意思是兩個向量平行但方向相反,
向量相乘等於0意思是兩個向量垂直。
補充:向量
在數學與物理中,既有大小又有方向的量叫做向量(亦稱向量),在數學中與之相對應的是數量,在物理中與之相對應的是標量。向量,最初被應用於物理學。很多物理量如力、速度、位移以及電場強度、磁感應強度等都是向量。
向量定義
向量數學中,既有大小又有方向且遵循平行四邊形法則的量叫做向量(vector)。有方向與大小,分為自由向量與固定向量。
自由向量只確定於方向與大小,而不在意位置,例如平行四邊形abcd中,向量ab=向量dc,就是指的自由向量。幾何中的向量,多為自由向量。
固定向量確定於方向與大小,以及起點位置。例如力學中的作用力就是固定向量。
數學中,把只有大小但沒有方向的量叫做數量,物理中常稱為標量。例如距離、質量、密度、溫度等。
("a1"的"1"為a的下標,"ai"的"i"為a的下標,其他類推)。
在程式語言中,也存在向量的說法。
表達方式
1.代數表示:一般印刷用黑體小寫字母α、β、γ…或a、b、c… 等來表示,手寫用在a、b、c…等字母上加一箭頭表示。
2.幾何表示:向量可以用有向線段來表示。
有向線段的長度表示向量的大小,向量的大小,也就是向量的長度。長度為0的向量叫做零向量,記作0。長度等於1個單位的向量,叫做單位向量。
箭頭所指的方向表示向量的方向。(若規定線段ab的端點a為起點,b為終點,則線段就具有了從起點a到終點b的方向和長度。這種具有方向和長度的線段叫做有向線段。
)[3]
3.座標表示:
1) 在平面直角座標系中,分別取與x軸、y軸方向相同的兩個單位向量i,j作為一組基底。a為平面直角座標系內的任意向量,以座標原點o為起點作向量op=a。由平面向量基本定理知,有且只有一對實數(x,y),使得a=向量op=xi+yj,因此把實數對(x,y)叫做向量a的座標,記作a=(x,y)。
這就是向量a的座標表示。其中(x,y)就是點p的座標。向量op稱為點p的位置向量。
向量2) 在立體三維座標系中,分別取與x軸、y軸,z軸方向相同的3個單位向量i,j,k作為一組基底。若a為該座標系內的任意向量,以座標原點o為起點作向量op=a。由空間基本定理知,有且只有一組實數(x,y, z),使得a=向量op=xi+yj+zk,因此把實數對(x,y, z)叫做向量a的座標,記作a=(x,y, z)。
這就是向量a的座標表示。其中(x,y, z),也就是點p的座標。向量op稱為點p的位置向量。
3) 當然,對於多維的空間向量,可以通過類推得到,此略。
0向量與任何向量相乘為什麼等於,0向量與任何向量相乘為什麼等於
此為書中規定,只需記住 這不是定理麼,若a 0,則對任一向量b 有a b 0.向量積 也被稱為向量積,而零向量是長度為0的向量。向量積c a b a b sin。a 0,所以c 0 a b a b cos a b夾角 這是定義。a b垂直則有cos a b夾角 0,所以a b 0 零向量與任何向量的...
4分之3乘多少等於多少乘6等於0點5乘多少等於4分之3減多少等於4分之1加多少等於
4分之3乘 3分之4 等於 6分之1 乘6 等於0.5乘 2 等於4分之3減 4分之1 等於4分之1加 4分之3 等於1 3分之1 多少等於5分之4 多少等於0.5 多少等於1 三分之一乘以3等於五分之四乘以四分之五等於0.5乘以二等於一 3分之1 3 5分之4 1.25 0.5 2 1 多少加4分...
0乘3等於多少,0乘以3等於多少3乘以0等於多少
0乘3等於0,因為分子為0,分母不為0的算式是可以進行運算的,因其分子數為0,所以 0乘3等於0 0,0 任何數都得0 0乘以bai3等於 0,3乘以0等於0.0乘任何數du都等於0。0是介於 1和zhi1之間的整數。是最小的dao自然數,也回是有理數。0既不是正數答也不是負數,而是正數和負數的分界...