在求偏導數中z f x,y ,偏Z偏x和偏f

2021-03-22 03:11:19 字數 2285 閱讀 7451

1樓:安克魯

解答:沒有任何區別。

1、z 是 x、y 的函式,∂z/∂x 表示「由於x的單獨變化引起z的變化,而導致的z隨x的變化率」;

2、z是一個因變數,通過f這一函式關係體現出來、計算出來,∂f/∂x是整個函式關係的結果隨著x變化的變化率;

3、f(x,y)算出來的是函式值,也就是z的值;而算出來的∂f/∂x就是∂z/∂x。

y方向上的解釋是類似的。

簡而言之一句話:f表示的是整個函式,而這個函式算出來的值用z表示,其實就

是由f算出來的f這個函式的值。f 可能是一個繁複的運算關係,

而z並不側重於這種關係,只側重由這種關係算出來的結果。

以一次函式 y = sinx 為例,在這裡 dy/dx 與 d(sinx)/dx 是沒有差別的。

道理、原理是一樣的。

2樓:滒°吥繲釋

沒有實質區別

z=f(x,y),偏f/偏x即使偏f(x,y)/偏x,即使偏z/偏x

3樓:匿名使用者

沒有區別啊

z=f(x,y) f表示對映關係,指z是x,y的函式

你看到的書本上怎麼寫的?

大一高等數學。 若z=f(x,y) z對x求偏導等不等於對z求偏導的倒數

4樓:匿名使用者

如果沒有x=v(t),y=s(t)函式z是二元函式,

dz=fxdx+fydy;

給定x,y為t的函式,直接求dx=xtdt,dy=ytdt即可,將dz=fxdx+fydy兩邊同除以dt就可得到全微分

方程.即dz=(fxxt+fyyt)dt;

代入原式即可,這和直接求1元函式的效果是一樣.

令:z=f(x,y);

則:δz/δx=δf/δx+(δf/δy)*(δy/δx)

用δ代替求偏導的符號,δf/δx這個就是對表示式中能看見的x求偏導的!δz/δx是當x變化時所引起的z變化率的關係。

擴充套件資料

偏導數的定義如下:

導數與偏導數本質是一致的,都是當自變數的變化量趨於0時,函式值的變化量與自變數變化量比值的極限。

偏導數也就是函式在某一點上沿座標軸正方向的的變化率。

區別在於:

導數,指的是一元函式中,函式y=f(x)在某一點處沿x軸正方向的變化率;偏導數,指的是多元函式中,函式y=f(x1,x2,…,xn)在某一點處沿某一座標軸(x1,x2,…,xn)正方向的變化率。

5樓:匿名使用者

偏導數 ∂z/∂x 是一個整體符號,不是分式。

∂z/∂x ≠ 1/(∂x/∂z)

6樓:匿名使用者

不等 應該是等於 對f(x,y)中含x的代數式求導其它字母看為常數

在偏導數那裡卡了。。。求u=f(x/y,y/z)的一階偏導數(其中f具有一階連續偏導數),謝謝麼麼

7樓:

u 是自變數 x、y、z 的函式;設 f 的偏導數為回 f1'、f2』;答

∂u/∂x=f1'*[∂(x/y)/∂x]+f2'*[∂(y/z)/∂x]=f1'/y+f2'*0=f1'/y;

∂u/∂y=f1'*[∂(x/y)/∂y]+f2'*[∂(y/z)/∂y]=-(x/y²)f1'+(f2'/z);

∂u/∂z=f1'*[∂(x/y)/∂z]+f2'*[∂(y/z)/∂z]=f1'*0-(y/z²)f2'=-(y/z²)f2';

z是xy的隱函式 f(x,y,z)對x求偏導數和f'x這兩個一樣嗎??二者區別在哪?

設方程f(z/x,y/z)=0確定了函式z=z(x,y)且f具有連續偏導數求z對x的偏導和z對y的偏導

8樓:匿名使用者

設:f1=偏

f/偏(z/x),f2=偏f/偏(y/z),則由f(z/x,y/z)=0得:0=偏f/偏x=f1偏(z/x)/偏x+f2偏(y/z)/偏x

=f1[-z/x²+(1/x)(偏z/偏x)]-f2(y/z²)(偏z/偏x)

整理得:偏

z/偏x=z³f1/(xz²f1-x²yf2)同樣:0=偏f/偏y=f1偏(z/x)/偏y+f2偏(y/z)/偏y=f1(1/x)(偏z/偏y)+f2[1/z-(y/z²)(偏z/偏y)]

整理得:偏z/偏y=xzf2/(xyf2-z²f1)

偏z/偏x=1/(1+e^x),對x求偏導,z=z(x,y)。怎麼直接求 10

設z e xy,其中y f x ,求z對x的偏導數?求詳解

解 因為z e xy 所以,z e y x因為求z對x的偏導數時,把y作為常量所以,e y也是常量所以,題目求z對x的偏導數就是形如指數函式a x對x的導數所以,z對x的偏導數 e y x ln e y 因為 e y x e xy 且ln e y ylne y所以,z對x的偏導數 y e xy 設z...

求r x y z的偏導數,求 根號(x平方 y平方 z平方)對x的偏導數

結果為 f v 解題過程如下 設z f u,v u 3x,v x y 則,z x f u u x f v v x 3 f u f v z y f u u y f v v y 0 f u 1 f v f v 求偏導數的方法 設有二元函式 z f x,y 點 x0,y0 是其定義域d 內一點。把 y 固...

z z x,y ,如何求z對x偏導

z x z1 z2 y1 z x y2 解得 z x z1 z2 y2 1 z2 y1 設z x,y 是由方程f y x,z x 0說確定的函式,則分別求出z對x的偏導和z對y的偏導請寫詳細過程謝謝 方程對復x求偏導制 f1為f對 y x 的偏導bai 數,duf2為f對 z x 的偏導數 f x ...