1樓:痴星冷月
f(x)=asin(ωx+φ)的值域應該為【-1,3】,a=【3-(-1)】/2=2(其實是最高點和最低點的平衡位置),最高點和最低點的橫座標的差為半個週期,所以週期t=3π*2=6π ,t=2π/w 則w=2π/t=2π/6π=1/3 現在f(x)=2sin(1/3x+φ) 將(0,2)代入f(x)=2sin(1/3x+φ) 2=2sinφ 得出答案|φ|大於等於π/2 可能題目有錯,如果φ取最小正值為π/2 則f(x)=2sin(1/3x+π/2 ),如果回答的不好不要見怪。
2樓:匿名使用者
題目沒寫錯吧????
f(x)=asin(ωx+φ)和(x0,3)(x0+3π,-1),看起來好像有點問題。
3樓:伊秋梵平
你這個題不對。
函式f(x)=asin(ωx+φ)它的最大值和最小值一定是互為相反數的。因為它只在x軸上平移伸縮,在y軸上伸縮了,並沒有在y軸方向上下平移。
例函式f(x)=2sin(ωx+φ)+1,它的值域是[-1,3],上下平移了,才能不是相反數。
這裡我不防把你的(x0+3π,-1)改為(x0+3π,-3)來按此做。
最大值是3,最小值是-3,且a>0,a=3;
由它在y軸右側第一個最大值點和最小值點分別為(x0,3)和(x0+3π,-1)
可得它的半個週期是3π,所以t=6π=2π/ω,ω=1/3;
再把點(0,2)代入f(x)=3[sin(x/3)+φ],解下φ值,這時的φ有無數個,取符合條件的。這裡一般φ都是特殊值,這裡按我假設的得:sinφ=2/3,原題應該不是的
這樣的題型是最典型的一類求三角函式解析式的題,你對三角函式的基本性質掌握的不是很好哦,比如:相鄰的最大值和最小值之間差的是這個函式的半個週期,好好看看書哦,這些書上全有呢
4樓:匿名使用者
題目不對,振幅應該是3 或者-1 這兩個值應該相等的
求三角函式解析式方法總結。
5樓:匿名使用者
y=asin(ωx+φ)
1.振幅求a。
2.週期求ω。
3.求φ方法:
①第一點的橫座標是方程:ωx+φ=0的根求φ。
②第二點的橫座標是方程:ωx+φ=π/2的根求φ。
③第三點的橫座標是方程:ωx+φ=π的根求φ④第四點的橫座標是方程:ωx+φ=3π/2的根求φ⑤第五點的橫座標是方程:ωx+φ=2π的根求φ
求三角函式的解析式。詳細。謝謝。
6樓:志者事竟成
y=asin(ωx+φ)
1.振幅求a。
2.週期求ω。
3.求φ方法:
①第一點的橫座標是方程:ωx+φ=0的根求φ。
②第二點的橫座標是方程:ωx+φ=π/2的根求φ。
③第三點的橫座標是方程:ωx+φ=π的根求φ④第四點的橫座標是方程:ωx+φ=3π/2的根求φ⑤第五點的橫座標是方程:ωx+φ=2π的根求φ
7樓:牛紫北鴻哲
是不是打錯了,高中數學裡應該是f(x)=√3sin(x/4
-π/3)吧,如果是打錯了的話那你可以根據g(x)與f(x)的對稱關係得出g(x)=√3sin(x/4-?),在利用三角函式的特殊性質,週期性計算,可以得出g(x)=√3sin[x/4+(2-49π/12),]。應該沒算錯吧,你自己再檢查一遍吧,實在不行可以去問老師。
三角函式解析式怎麼求啊?
8樓:匿名使用者
最簡單的方法就是代特殊點到y=asin(wx+φ)裡面去求φ值,這個特殊點一般最好是函式的零點,也就是說是當y=0時的點。特別是你說能把w跟a求出來的前提下,這種方法是最好的。
9樓:厷鉒戀懓
φ就是代入點的座標(最低點或最高點在影象上),該點的座標滿足解析式,求得φ。
或是利用函式的零點來求。
求三角函式解析式a怎麼求
10樓:
1.4π
-4/π=3t/4, 週期t=5π
所ωbai=2π/t=2/5
由低點:dua=3
(π/4,0)代入zhiωx+∮:2 /5× π/4+∮= 0 解:∮dao=-π/10
所f(x)=3sin(2x/5-π/10)
(1.程沒專移(屬程面沒加減任何東西看)所相交於x軸4ππ/4兩點間3/4週期畫圖看看所兩點距離週期3/4
2.af(x)=sinx影象值1值-1a位置整影象拿拉高或者壓扁所說低點縱座標-3整拉高a=3基本a判斷高點或低點看前提程沒移
3.代x=π/4候f(x)=sinx原點x=0y=0點由原點移 (代其點代隔壁交x軸點變π/4+/t2帶入要變等於f(x)=sinxπ/2,2 /5×( π/4+t/2)+∮= π/2,要注意題目∮絕值要於π/2)
種題目套路差都做幾道熟悉
三角函式求解析式
11樓:匿名使用者
1.4π-4/π=3t/4, 週期t=5π
所以ω=2π/t=2/5
由最低點可得:a=3
將(π/4,0)代入ωx+∮,得:2 /5× π/4+∮= 0 解得:∮=-π/10
所以f(x)=3sin(2x/5-π/10)
(1.因為這個方程沒有上下移動(從方程最後面沒有加減任何東西可以看出),所以相交於x軸的4π和π/4兩個點之間就是3/4個週期,你可以畫圖看看。所以兩點距離就是週期的3/4。
2.然後是a,f(x)=sinx影象的最大值是1,最小值是-1,a在這個位置就是把整個影象拿來拉高或者壓扁,所以他說最低點的縱座標是-3的話,就是整個被拉高了,a=3,基本上a的判斷方法可以從最高點或最低點看,當然前提還是方程沒有上下移動。
3.這裡代x=π/4的時候,是因為如果只有f(x)=sinx的話,原點x=0,y=0,這個點是由原點移動得到。 (當然你也可以代其它的點,如你代隔壁交x軸的點那就變成π/4+/t2,帶入你要變成等於f(x)=sinx中的π/2,就是2 /5×( π/4+t/2)+∮= π/2,要注意題目中∮的絕對值要小於π/2)
這種題目套路差不多都是這樣的,做多幾道就熟悉了。
12樓:匿名使用者
a=3φ=-π/4
t = (4π -π/4 ) / (3/4) = 45π/16ωt = 2π
ω(45π/16) = 2π
ω = 32/45
f(x) = 3sin( (32/45)x -π/4)
13樓:匿名使用者
圖中兀/4標在具體什麼位置??
14樓:禕騫信
f(x)=2sin(4分之派x+4分之派).
如何由三角函式的圖象求解析式
15樓:善言而不辯
振幅a=(最大值-最小值)/2
垂直方向平移量v=最大值-a
作直線y=v,直線與三角函式的相鄰的兩個交點間的距離是半週期t/2,ω=2π/t
確定是用正弦還是餘弦表示式,如為正弦
選擇直線y=v,直線與三角函式的交點中離開y軸最近的那個交點,在y軸的左側,初相φ為正,在y軸的右側初相φ為負,初相|φ|=離開y軸最近的那個交點到y軸的距離。
(餘弦表示式取離開y軸最近的那個最大值點)
三角函式的解析式怎麼求,求詳細點,卡在這裡了
16樓:路人__黎
兩條對稱軸距離最短,說明這兩條對稱軸相鄰。又因為兩條相鄰的對稱軸之間的距離是半個週期,所以函式的週期是π,則w=2
三角函式和反三角函式的關係式,三角函式關係式,和反三角函式關係式,求公式
sin a b sinacosb cosasinb sin a b sinacosb sinbcosa cos a b cosacosb sinasinb cos a b cosacosb sinasinb tan a b tana tanb 1 tanatanb tan a b tana tanb...
三角函式求極限的方法,關於三角函式極限
1 3 5 7,都可以使用洛必達法則。第七,變形 sin 1 x 1 x 基礎方法鞏固練習題,不要偷懶,一定要自己搞清楚。關於三角函式極限 10 極限首先應該考慮的是自變數的變化過程,第二,要理解極限時一個確定的常數,是一個數。三角函式公式 公式一 公式二 sin 2k sin cos 2k cos...
求各種三角函式的導數公式,三角函式的導數公式三角函式的導數怎麼求
設f x sinx f x dx f x dx sin x dx sinx dx sinxcosdx sindxcosx sinx dx因為dx趨近於0 cosdx趨近於1 f x dx f x dx sindxcosx dx 根據重要極限 sinx x在x趨近於0時等於一 f x dx f x d...