線性代數,化標準形。請高手寫一寫過程

2021-03-04 04:50:35 字數 3079 閱讀 2507

1樓:匿名使用者

^主要步驟思路如下:

二次型 f = 5x^2+6y^2+7z^2-4xy-4yz 的矩陣 a =

[ 5 -2 0]

[-2 6 -2]

[ 0 -2 7]

求出其特徵值 λ= 3, 6,

9, 及正交化單回位化的特徵向答量,

組成正交特徵向量矩陣 p,

則則 p^tap = diag(3, 6, 9)二次型正交變換為標準型,曲面化為 3u^2 + 6v^2+ 9w^2 = 36

即 u^2/12 + v^2/6 + w^2/4 = 1 。 曲面是橢球面。

線性代數(二次型化為規範型問題)

2樓:匿名使用者

1. 是的, 一般是先化為標準型

如果題目不指明用什麼變換, 一般情況配方法比較簡單若題目指明用正交變換, 就只能通過特徵值特徵向量了2. 已知標準形後, 平方項的係數的正負個數即正負慣性指數配方法得到的標準形, 係數不一定是特徵值.

例題中平方項的係數 -2,3,4, 兩正一負, 故正負慣性指數分別為2, 1

所以規範型中平方項的係數為 1,1,-1 (兩正一負)

3樓:

有的二次型可以直接化為規範形,可省去化標準形的過程,比如f(x,y,z)=5x^2+2xy+y^2-4z^2,配方4x^2+(x+y)^2-4z^2。若令u=x,v=x+y,w=z,即x=u,y=u-v,z=w,則f=4u^2+v^2-4w^2,這是標準形。如果令u=2x,v=x+y,w=2z,則直接得規範形f=u^2+v^2-w^2。

由標準形知道正、負特徵值的個數,即可直接寫出規範形,至於標準形是用可逆的線性變換還是正交變換得到的,對特徵值的正負有影響嗎?

這個二次型的矩陣是對角矩陣,特徵值為-2,3,4,兩正一負,所以規範形即得

4樓:匿名使用者

問題1,二次型可以直接化為規範型。問題2.因為正負慣性指數是由標準型各項的係數決定的,所以一目瞭然。

是根據特徵值確定的,因為從二次型到標準型用代數的方法做,得到的標準型的各項係數就是特徵值。因為標準型的係數都是合同的,所以是······

線性代數二次型化為標準型

5樓:匿名使用者

^二次型矩陣 a =

[ 2 -2 0]

[-2 1 -2]

[ 0 -2 0]

|λe-a| =

|λ-2 2 0|| 2 λ-1 2|| 0 2 λ|= λ(λ-1)(λ-2) - 4(λ-2) - 4λ= λ(λ-1)(λ-2) - 8(λ-1)= (λ-1)(λ^2-2λ-8) = (λ-1)(λ-4)(λ+2)

特徵值λ = 4,1, -2.

對於特徵值 λ = 4,λe-a =

[ 2 2 0]

[ 2 3 2]

[ 0 2 4]

初等行變換為

[ 1 1 0]

[ 0 1 2]

[ 0 2 4]

初等行變換為

[ 1 0 -2]

[ 0 1 2]

[ 0 0 0]

得特徵向量(2 -2 1)^t,單位化是(2/3 -2/3 1/3)^t;

對於特徵值 λ = 1,λe-a =

[-1 2 0]

[ 2 0 2]

[ 0 2 1]

初等行變換為

[ 1 -2 0]

[ 0 4 2]

[ 0 2 1]

初等行變換為

[ 1 0 1]

[ 0 2 1]

[ 0 0 0]

得特徵向量(2 1 -2)^t,單位化是(2/3 1/3 -2/3)^t;

對於特徵值 λ = -2,λe-a =

[-4 2 0]

[ 2 -3 2]

[ 0 2 -2]

初等行變換為

[ 2 -1 0]

[ 0 -2 2]

[ 0 2 -2]

初等行變換為

[ 2 0 -1]

[ 0 1 -1]

[ 0 0 0]

得特徵向量(1 2 2)^t,單位化是(1/3 2/3 2/3)^t.

得正交矩陣 p =

[ 2/3 2/3 1/3][-2/3 1/3 2/3][ 1/3 -2/3 2/3]作正交變換 x = py

使得 f = x^tax = y^t(p^tap)y = 4(y1)^2 + (y2)^2 - 2(y3)^2

線性代數中,把二次型化為標準型,y平方前的係數是矩陣的特徵值,但是係數可以隨便按順序寫嗎?

6樓:匿名使用者

寫成抄哪個都可以,你用的應該是襲正交變換吧?

bai要注意一點,正du交變換是找p使,zhip^tap=b,其中b是對角dao陣,這裡p裡面的列向量為特徵向量,順序要與你的特徵值一致。

【數學之美】團隊為您解答,若有不懂請追問,如果解決問題請點下面的「選為滿意答案」。

7樓:匿名使用者

只有正交變換這三個數才是特徵值。

線性代數施密特正交化問題,線性代數施密特正交化

原理就復是投影。舉個制 最簡單的例子,三維空間,三個線性無關向量,a b c現在將其正交化,第一個就選a,第二個,用b作a方向的投影b剪掉這個投影就和a垂直了,而新做出的向量還在a.b張成的空間裡。在考慮c,對a.b張成的空間投影剪掉之後的新向量與a.b張成空間垂直。就ok了 線性代數施密特正交化?...

線性代數題求高手解答,線性代數問題,求高手解答

1.a1,a2,am線性相關則這一向量組中至少有一個向量能被其餘的向量線性表示。2.a的秩和增廣矩陣a b的秩不同的時候無解相同且等於n的時候有唯一解 相同小於n的時候有無窮解 線性代數題,求高手解答 10 利用矩陣秩的傳遞性證明 過程如下圖 線性代數問題,求高手解答 把二個解,帶進去 通過r a ...

線性代數這題為什麼p不用單位化,線性代數,矩陣對角化,為什麼圖中的p不用單位化

求正交矩陣p才用單位化,只說求可逆矩陣的話就不用單位化,因為正交矩陣列向量要垂直,而可逆矩陣不一定要垂直 你應該反問自己為什麼你想要單位化.這裡邏輯上已經完整了,何必再多做一步單位化?線性代數,矩陣對角化,為什麼圖中的p不用單位化 只要方陣a有n個線性無關的特徵向量都可以相似對角化,用於對角化的矩陣...