如何判斷該級數是發散還是收斂,怎麼判斷髮散還是收斂

2021-03-04 05:15:41 字數 4347 閱讀 7472

1樓:匿名使用者

這是發散級數。因為

[(1/√n)sin(1/√n)]/(1/n)→ 1 (n→∞),

而級數 ∑(1/√n) 發散,據比較判別法即得。

怎麼判斷髮散還是收斂?

2樓:angela韓雪倩

第一個其實就是正項的等比數列的和,公比小於1,是收斂的。

第二個項的極限是∞,必然不收斂。

拓展資料:

簡單的說

有極限(極限不為無窮)就是收斂,沒有極限(極限為無窮)就是發散。

例如:f(x)=1/x 當x趨於無窮是極限為0,所以收斂。

f(x)= x 當x趨於無窮是極限為無窮,即沒有極限,所以發散。

收斂數列與其子數列間的關係

子數列也是收斂數列且極限為a恆有|xn|若已知一個子數列發散,或有兩個子數列收斂於不同的極限值,可斷定原數列是發散的。

發散級數指不收斂的級數。一個數項級數如果不收斂,就稱為發散,此級數稱為發散級數。一個函式項級數如果在(各項的定義域內)某點不收斂,就稱在此點發散,此點稱為該級數的發散點。

按照通常級數收斂與發散的定義,發散級數是沒有意義的。

然而為了實際的需要,可以確立一些法則,對某些發散級數求它們的「和」,或者說某個發散級數在特定的極限過程中,逐漸逼近某個數。但是在實際的數學研究以及物理等其它學科的應用中,常常需要對發散級數進行運算,於是數學家們就給發散級數定義了各種不同的「和」,比如cesàro和,abel和,euler和等,使得對收斂級數求得的這些和仍然不變,而對某些發散級數,這種和仍然存在。

3樓:匿名使用者

就是看極限存不存在了。也就是說當n→∞時,能不能找到一個數,是式子減這個數,然後取絕對值後的值很小很小。

4樓:匿名使用者

判斷級數收斂及分散的方法有很多,第一個級數為交錯級數,可以由萊布尼茨判別法知為收斂,第二個級數,當n趨於無窮時,xn不趨於0,由級數收斂的必要條件可知該級數不收斂

如何判斷一個數列是發散還是收斂?

5樓:不是苦瓜是什麼

看n趨向無窮大時,xn是否趨向一個常數,即可以判斷收斂還是發散。

可是有時xn比較複雜,並不好觀察,加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小。

收斂函式一定有界,但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2。

基本公式:

1、一般數列的通項an與前n項和sn的關係:an=sn-sn-1。

2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。

3、等差數列的前n項和公式:sn=an^2+bn sn=na1+[n(n-1)]d/2 sn=(a1+an)n/2。

當d≠0時,sn是關於n的二次式且常數項為0;當d=0時(a1≠0),sn=na1是關於n的正比例式。

4、等比數列的通項公式: an= a1 qn-1 an= ak qn-k (其中a1為首項、ak為已知的第k項,an≠0)。

5、等比數列的前n項和公式:當q=1時,sn=n a1 (是關於n的正比例式)。

6樓:angela韓雪倩

第一個其實就是正項的等比數列的和,公比小於1,是收斂的。

第二個項的極限是∞,必然不收斂。

拓展資料:

簡單的說

有極限(極限不為無窮)就是收斂,沒有極限(極限為無窮)就是發散。

例如:f(x)=1/x 當x趨於無窮是極限為0,所以收斂。

f(x)= x 當x趨於無窮是極限為無窮,即沒有極限,所以發散。

收斂數列與其子數列間的關係

子數列也是收斂數列且極限為a恆有|xn|若已知一個子數列發散,或有兩個子數列收斂於不同的極限值,可斷定原數列是發散的。

發散級數指不收斂的級數。一個數項級數如果不收斂,就稱為發散,此級數稱為發散級數。一個函式項級數如果在(各項的定義域內)某點不收斂,就稱在此點發散,此點稱為該級數的發散點。

按照通常級數收斂與發散的定義,發散級數是沒有意義的。

然而為了實際的需要,可以確立一些法則,對某些發散級數求它們的「和」,或者說某個發散級數在特定的極限過程中,逐漸逼近某個數。但是在實際的數學研究以及物理等其它學科的應用中,常常需要對發散級數進行運算,於是數學家們就給發散級數定義了各種不同的「和」,比如cesàro和,abel和,euler和等,使得對收斂級數求得的這些和仍然不變,而對某些發散級數,這種和仍然存在。

7樓:大孩子

看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察,加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來。

基本公式:

1.一般數列的通項an與前n項和sn的關係:an=sn-sn-1。

2.等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。

3.等差數列的前n項和公式:sn=an^2+bn sn=na1+[n(n-1)]d/2 sn=(a1+an)n/2。

當d≠0時,sn是關於n的二次式且常數項為0;當d=0時(a1≠0),sn=na1是關於n的正比例式。

4.等比數列的通項公式: an= a1 qn-1 an= ak qn-k (其中a1為首項、ak為已知的第k項,an≠0)。

5.等比數列的前n項和公式:當q=1時,sn=n a1 (是關於n的正比例式)。

如何判斷級數是收斂的還是發散的還有絕對收斂和條件

8樓:匿名使用者

有各種各樣的判斂法,比如正項級數的比值判斂法、根值判斂法、拉阿貝判斂法、高斯判斂法;變號級數的萊布尼茲判斂法、阿貝爾判斂法、~狄利克雷判斂法等等,建議你查查書

如何判斷數列收斂還是發散?

9樓:答疑老度

加減的時候, 把高階的無窮小直接捨去,如 1 + 1/n,用1來代替。乘除的時候, 用比較簡單的等價無窮小來代替原來複雜的無窮小來,如1/n * sin(1/n) 用1/n^2 來代替,如果數列項數n趨於無窮時,數列的極限==實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。

10樓:匿名使用者

看n趨向無窮大時,xn是否趨向一個常數,即可以判斷收斂還是發散。

可是有時xn比較複雜,並不好觀察,加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小。

收斂函式一定有界,但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2。

11樓:墨汁諾

這是交錯級數,用萊布尼茨判別法。 交錯級數的數項的絕對值在n趨於無窮的時候取0,且數項的絕對值隨n增大時遞減,那麼,該交錯級數是收斂的。

收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。

加減的時候, 把高階的無窮小直接捨去

如 1 + 1/n, 用1來代替

乘除的時候, 用比較簡單的等價無窮小來代替原來複雜的無窮小來如 1/n * sin(1/n) 用1/n^2 來代替

12樓:匿名使用者

收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。

13樓:花事未了

收斂是數列趨於一個定值,發散則沒有定值

14樓:塗樹花江戌

看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察,

加減的時候,

把高階的無窮小直接捨去如1

+1/n,

用1來代替

乘除的時候,

用比較簡單的等價無窮小來代替原來複雜的無窮小來如1/n

*sin(1/n)

用1/n^2來代替

判斷級數是收斂還是發散

15樓:彳亍雲啊

收斂的。利用比較審斂法,這個是<=1/4^n,而後面這個級數是收斂的。

如何判斷數列是發散的還是收斂的,怎樣求數列的極限

求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的 如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察。加減的時候,把高階的無窮小直接捨去如 1 1 n,用1來代替乘除的時候,用比較簡單的等價無窮小...

怎麼判斷函式和數列是收斂或發散的

1 設數列,如果存在常數a,對於任意給定的正數q 無論多小 總存在正整數n,使得n n時,恆有 xn a 2 求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的 如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複...

判別下列級數是否收斂,若收斂,是絕對收斂還是條件收斂

你好 都是條件收斂的,分析如圖。以後請每題分開提問,方便別人回答。經濟數學團隊幫你解答,請及時採納。謝謝 高數高數判別下列級數是否收斂,若收斂,是絕對收斂還是條件收斂?10 對於復任意的n有,cos n 1所以制 cos n n2 bai1 n2由p級數性質,1 n2是收斂du的zhi。所以 cos...