1樓:僕聽雲龐淼
答指數函式的自變數是指數,例如y=a^x
(a>0,a≠1)
冪函式的自變數是底數,例如y=x^n
(n為有理數——整數或分數)
2樓:刑梓楠肖添
在某變化過程中,有兩個變數x,y,如果對於x在某個
範圍內的每一個確定的值回,按照某個答對應法則,y都有唯一確定的值和它對應,那麼y就是x的函式,x叫自變數,x的取值範圍叫做函式的定義域,和x的值對應的y的值叫做函式值,函式值的集合叫做值域.
指數函式:一般地,函式y=ax(a>0,且a≠1)叫做指數函式,其中x是自變數。函式的定義域是r。
對數函式是指數函式的反函式,教材是根據互為反函式的兩個函式的圖象間關於直線y=x對稱的性質。
函式y=x^a叫做冪函式,其中x是自變數,a是常數(這裡我們只討論a是有理數n的情況).
好辛苦打的字
希望你能滿意
謝謝接納答案
指數函式冪函式的區別
3樓:達豐
1、自變數x的位置不同。
指數函式,自變數x在指數的位置上,y=a^x(a>0,a 不等於 1)。
冪函式,自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。
2、性質不同。
指數函式性質:
當 a>1 時,函式是遞增函式,且 y>0;
當 00。
冪函式性質:
正值性質:
當a>0時,冪函式有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間[0,+∞)上是增函式;
c、在第一象限內,a>1時,導數值逐漸增大;a=1時,導數為常數;0負值性質:
當a<0時,冪函式有下列性質:
a、影象都通過點(1,1);
b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
零值性質:
當a=0時,冪函式有下列性質:
a、y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。
3、值域不同。
指數函式的值域是(0,+∞),冪函式的值域是r。
4樓:匿名使用者
區別:這兩個完全是不同的函式。
1、定義不同,從兩者的數學表示式來看,兩者的未知量x的位置剛好互換。
指數函式:自變數x在指數的位置上,y=a^x(a>0,a不等於1),當a>1時,函式是遞增函式,且y>0;當00.
冪函式:自變數x在底數的位置上,y=x^a(a不等於1)。a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。
2、影象不同:指數函式的圖象是單調的,始終在
一、二象限,經過(0,1)點;冪函式需要具體問題具體分析。
3、性質不同
冪函式性質:1、正值性質即當α>0時,冪函式y=xα有下列性質:a、影象都經過點(1,1)(0,0);b、函式的影象在區間[0,+∞)上是增函式;c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;
2、負值性質即當α<0時,冪函式y=xα有下列性質:a、影象都通過點(1,1);b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。
利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
3、零值性質當α=0時,冪函式y=xa有下列性質:y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。
指數函式性質:指數函式的定義域為r,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函式的定義域不連續,因此我們不予考慮,同時a等於0函式無意義一般也不考慮。
擴充套件資料
冪的比較常用方法:1、做差(商)法:a-b大於0即a大於b a-b等於0即a=b a-b小於0即a小於b 步驟:
做差—變形—定號—下結論 ;a\b大於1即a大於b a\b等於1即a等於b a/b小於1即a小於b (a,b大於0)2、函式單調性法;3、中間值法:要比較a與b的大小,先找一箇中間值c,再比較a與c、b與c的大小,由不等式的傳遞性得到a與b之間的大小。
5樓:home暮光青檸
區別:1、
自變數1指數函式的自變數為指數。
2冪函式的自變數為底數。
2、性質
1指數函式過定點(0,1),值域為(0,+∞),定義域為r(即實數)。
2冪函式過定點(1,1)通常包括正比例函式,二次函式,三次函式,反比例函式和指數函式。(即只討論a=1,2,3,-1,二分之一)
3、表示式
1指數函式:y=a的x方 (a>1時為增函式,0
2冪函式;y=x的a方(a=1,2,3,-1,二分之一),其中y=x2是偶函式(即a=2),其它是奇函式 區別方法 觀察函式的自變數 x 所在的位置,x 在指數位置就是指數函式,x 在底數位置就是冪函式。 6樓:雍寒縱飛捷 1冪函式:y=x^μ(μ≠0,μ為任意實數)定義域:μ為正整數時為(-∞,+∞),μ為負整數時是(-∞,0)∪(0,+∞);μ=(α為整數),當α是奇數時為(-∞,+∞),當α是偶數時為(0,+∞);μ=p/q,p,q互素,作為的複合函式進行討論。 略圖如圖2、圖3。 2指數函式:y=a^x(a>0,a≠1),定義成為(-∞,+∞),值域為(0,+∞),a>0時是嚴格單調增加的函式(即當x2>x1時,),0
如圖4。 3對數函式:y=logax(a>0),稱a為底,定義域為(0,+∞),值域為(-∞,+∞)。a>1時是嚴格單調增加的,0
不論a為何值,對數函式的圖形均過點(1,0),對數函式與指數函式互為反函式。如圖5。 以10為底的對數稱為常用對數,簡記為lgx。在科學技術中普遍使用的是以e為底的對數,即自然對數,記作lnx。 7樓:零午風尚 ^冪函式與指數函式的區別:指數函式:自變數 x 在指數的位置上,y=a^x(a>0,a 不等於 1)性質: 當 a>1 時,函式是遞增函式,且 y>0; 當 00. 2. 函式影象: 冪函式:自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。 高中數學裡面,冪函式主要要掌握 a=-1、2、3、1/2 時的影象即可。其中當 a=2 時, 函式是過原點的二次函式。 其他 a 值的影象可自己通過描點法畫下並瞭解下基本影象的走向即可。 性質: 根據圖象,冪函式性質歸納如下: (1)所有的冪函式在(0,+∞)都有定義,並且圖象都過點 (1,1); (2)當 a>0 時,冪函式的圖象通過原點,並且在區間[0,+ ∞)上是增函式. 特別地,當 a>1 時,冪函式的圖象下凸;當 0(3)當 a<0 時,冪函式的圖象在區間(0,+∞)上是減函式.在第一象限內, 當 x 從右邊趨向原點時,圖象在 y 軸右方無限地逼近 y 軸正半軸,當 x 趨 於+∞時,圖象在軸 x 上方無限地逼近軸 x 正半軸。 指出:此時 y=x0=1;定義域為(-∞,0)∪(0,+∞),特別強調, 當 x 為任何非零實數時,函式的值均為 1,影象是從點(0,1)出發,平行於 x 軸的兩條射線,但點(0,1)要除外。 8樓:天使的星辰 指數函式:自變數x在指數的位置上,y=a^x(a>0,a不等於1) ,性質比較單一,當a>1時,函式是遞增函式,且y>0; 當00. 2.冪函式:自變數x在底數的位置上,y=x^a(a不等於1). a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。 9樓:燕山少公保 比如一個函式的形式為y=a^b,y是因變數,如果a是自變數,b是常數就是冪函式,如果b是自變數,a是常數就是指數函式。 10樓:柯南一夢 指數函式冪函式有以下區別: 函式表示式不同。冪函式表示為y=x^a,而指數函式表示為y=a^x(a>0,且a≠1)。 定義域和值域不同。冪函式的定義域和值域隨著a的取值不同而變化,而指數函式的定義域恆為r,值域恆為(0,+∞) 增長率不同。指數函式影象的增長比冪函式快的多,所以有「指數**」的說法。 函式性質不同。冪函式可能是奇函式或者偶函式,而指數函式永遠是非奇非偶函式。 11樓:仙人鳴人 ^區別方法:觀察函式的自變數 x 所在的位置,x 在指數位置就是指數函式,x 在底數位置就是冪函式。 形如 y=a^x (a>0且a≠1) (x∈r) 的函式叫指數函式。 性質:1. 定義域和值域 x ∈ r,y >0,影象在 x 軸上方 2. 單調性 a>1 時指數函式 y=a^x 是增函式 00時,冪函式 y=x^α 有下列性質: a、影象都經過點(1,1)(0,0); b、函式的影象在區間 [0,+∞) 上是增函式; c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0; a=1 時即為一次函式 y=x(直線) a=2 時即為二次函式 y=x2(拋物線) α 取負值 當α<0時,冪函式 y=x^α 有下列性質: a、影象都通過點(1,1); b、影象在區間(0,+∞)上是減函式;若為x^(-2),易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此。 c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。 a=-1 時即為反比例函式 y=1/x(雙曲線) α 取零 當 α=0 時,冪函式 y=x^a 有下列性質: y=x^0 的影象是直線y=1去掉一點(0,1),是兩條射線,不是連續的直線(即中間有空洞)。 求過曲線上一點 x0,y0 的切線方程都是一樣的方法,因為過此點的切線的斜率為y x0 由點斜式即可立即得切線方程 y y x0 x x0 y0,其中y0 y x0 1 對數函式y log a x y 1 lnxlna 切線為y x x0 lnx0lna loga x0 2 指數函式y a x,y ... 高增長率為x,則 781.66 1 x 19 19195.69 2011 1992 19年 所以 版 1 x 19 19195.69 781.66 24.557595 lg 1 x lg 24.557595 19 0.073167676 x 0.183498 即合權18.35 急求 指數函式和對數函... 例如a列是1,2,3,4,5,6 b列是1,4,9,16,25,36 選定a,b兩列的資料 插入 圖表 xy散點圖 完成在生產的圖表中,滑鼠靠近某一個散點,右鍵 新增趨勢線 型別 選擇 乘冪 再在選項裡面,勾選顯示公式。在excel中如何使用指數函式,冪函式,對數函式擬合一組資料?1 框選資料 散點...請問怎麼求對數函式指數函式冪函式的切線方程
指數函式和對數函式的應用題,急求指數函式和對數函式的應用題
怎樣用sklearn做指數,對數,冪函式的擬合