1樓:老衲吃橘子
n!=1×2×3×...×n。階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。
雙階乘用「m!!」表示。
當 m 是自然數時,表示不超過 m 且與 m 有相同奇偶性的所有正整數的乘積。如:
當 m 是負奇數時,表示絕對值小於它的絕對值的所有負奇數的絕對值積的倒數。
當 m 是負偶數時,m!!不存在。
任何大於等於1 的自然數n 階乘表示方法:
2樓:sky註冊賬號
n!=1×2×3×...×n或者0!=1,n!=(n-1)!×n例如,求1x2x3x4...xn的值,此時可以用階乘的方式表示:
n!=1×2×3×...×(n-1)n或者n!=(n-1)!×n一個正整數的階乘(factorial)是所有小於及等於該數的正整數的積,並且0的階乘為1。自然數n的
階乘寫作n!。2023年,基斯頓·卡曼引進這個表示法。階乘常用於計算機領域。
大於等於1
任何大於等於1 的自然數n 階乘表示方法:
n!=1×2×3×...×(n-1)n或n!=(n-1)!×n0的階乘
其中0!=1
3樓:匿名使用者
公式:n!=n*(n-1)!
階乘的計算方法
階乘指從1乘以2乘以3乘以4一直乘到所要求的數。
例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。 例如所要求的數是6,則階乘式是1×2×3×..×6,得到的積是720,720就是6的階乘。
例如所要求的數是n,則階乘式是1×2×3×…×n,設得到的積是x,x就是n的階乘。
階乘的表示方法
在表達階乘時,就使用「!」來表示。如x的階乘,就表示為x!
他的原理就是反推,如,舉例,求10的階乘=10*9的階乘(以後用!表示階乘)那麼9!=?
,9!=9*8!,8!
=8*7!,7!=7*6!
,6!=6*5!,5!
=5*4!,4!=4*3!
,3!=3*2!,2!
=2*1!,1的階乘是多少呢?是1 1!
=1*1,數學家規定,0!=1,所以0!=1!
然後在往前推算,公式為n!(n!為當前數所求的階乘)=n(當前數)*(n-1)!
(比他少一的一個數n-1的階乘把公式列出來像後推,只有1的!為1,所以要從1開始,要知道3!要知道2!
就要知道1!但必須從1!開始推算所以要像後推,如果遍程式演算法可以此公式用一個函式解決,並且巢狀呼叫次函式,,)把數帶入公式為, 1!
=1*1 2!=2*1(1!) 3!
=3*2(2!) 4=4*6(3!),如果要是程式設計,怎麼解決公式問題呢
首先定義演算法
//演算法,1,定義函式,求階乘,定義函式fun,引數值n,(#include
long fun(int n ) //long 為長整型,因20!就很大了超過了兆億
(數學家定義數學家定義,0!=1,所以0!=1!,0與1的階乘沒有實際意義)
2,函式體判斷,如果這個數大於1,則執行if(n>1)(往回退算,這個數是10求它!,要從2的階乘值開始,所以執行公式的次數定義為9,特別需要注意的是此處,當前第一次寫入**執行,已經算一次)
求這個數的n階乘(公式為,n!=n*(n-1)!,並且反回一個值,
return (n*(fun(n-1));(這個公式為,首先這個公式求的是10的階乘,但是求10的階乘就需要,9的階乘,9的階乘我們不知道,所以就把10減1,也就是n-1做為一個新的階乘,從新呼叫fun函式,求它的階乘然後在把這個值返回到 fun(n-1),然後執行n*它返回的值,其實這個公式就是呼叫fun函式的結果,函式值為return 返回的值,(n-1)為引數依次類推,...一值巢狀呼叫fun函式,
到把n-1的值=1,
注意:此時已經執行9次fun()函式算第一次執行,,呼叫幾次fun函式呢?8次函式,所以,n-1執行了9次,n-1=1 ,n=2已經呼叫就可以求2乘階值
4樓:天涯客
除了樓上說的階乘,還有一種叫雙階乘,用!!表示,一個感嘆號是階乘,兩個感嘆號是雙階乘,雙階乘的演算法,比如
7!!=1*3*5*7
8!!=2*4*6*8
5樓:葬花的饕餮
n!=1×2×3×...×n。階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。
階乘是基斯頓·卡曼(christian kramp,1760~1826)於 1808 年發明的運算子號,是數學術語。
一個正整數的階乘(factorial)是所有小於及等於該數的正整數的積,並且0的階乘為1。自然數n的階乘寫作n!。2023年,基斯頓·卡曼引進這個表示法。
擴充套件資料
嚴謹的階乘定義應該為:對於數n,所有絕對值小於或等於n的同餘數之積。稱之為n的階乘,即n!
對於複數應該是指所有模n小於或等於│n│的同餘數之積。。。對於任意實數n的規範表示式為:
正數 n=m+x,m為其正數部,x為其小數部
負數n=-m-x,-m為其正數部,-x為其小數部
6樓:匿名使用者
階乘= 10!=
階乘的公式是什麼?
7樓:匿名使用者
公式:n!=n*(n-1)!
階乘的計算方法
階乘指從1乘以2乘以3乘以4一直乘到所要求的數。
例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。 例如所要求的數是6,則階乘式是1×2×3×..×6,得到的積是720,720就是6的階乘。
例如所要求的數是n,則階乘式是1×2×3×…×n,設得到的積是x,x就是n的階乘。
階乘的表示方法
在表達階乘時,就使用「!」來表示。如x的階乘,就表示為x!
他的原理就是反推,如,舉例,求10的階乘=10*9的階乘(以後用!表示階乘)那麼9!=?
,9!=9*8!,8!
=8*7!,7!=7*6!
,6!=6*5!,5!
=5*4!,4!=4*3!
,3!=3*2!,2!
=2*1!,1的階乘是多少呢?是1 1!
=1*1,數學家規定,0!=1,所以0!=1!
然後在往前推算,公式為n!(n!為當前數所求的階乘)=n(當前數)*(n-1)!
(比他少一的一個數n-1的階乘把公式列出來像後推,只有1的!為1,所以要從1開始,要知道3!要知道2!
就要知道1!但必須從1!開始推算所以要像後推,如果遍程式演算法可以此公式用一個函式解決,並且巢狀呼叫次函式,,)把數帶入公式為, 1!
=1*1 2!=2*1(1!) 3!
=3*2(2!) 4=4*6(3!),如果要是程式設計,怎麼解決公式問題呢
首先定義演算法
//演算法,1,定義函式,求階乘,定義函式fun,引數值n,(#include
long fun(int n ) //long 為長整型,因20!就很大了超過了兆億
(數學家定義數學家定義,0!=1,所以0!=1!,0與1的階乘沒有實際意義)
2,函式體判斷,如果這個數大於1,則執行if(n>1)(往回退算,這個數是10求它!,要從2的階乘值開始,所以執行公式的次數定義為9,特別需要注意的是此處,當前第一次寫入**執行,已經算一次)
求這個數的n階乘(公式為,n!=n*(n-1)!,並且反回一個值,
return (n*(fun(n-1));(這個公式為,首先這個公式求的是10的階乘,但是求10的階乘就需要,9的階乘,9的階乘我們不知道,所以就把10減1,也就是n-1做為一個新的階乘,從新呼叫fun函式,求它的階乘然後在把這個值返回到 fun(n-1),然後執行n*它返回的值,其實這個公式就是呼叫fun函式的結果,函式值為return 返回的值,(n-1)為引數依次類推,...一值巢狀呼叫fun函式,
到把n-1的值=1,
注意:此時已經執行9次fun()函式算第一次執行,,呼叫幾次fun函式呢?8次函式,所以,n-1執行了9次,n-1=1 ,n=2已經呼叫就可以求2乘階值
8樓:劉潔曹錦
階乘沒有公式,要一個一個的算,
20以內的數的階乘
階乘一般很難計算,因為積都很大。
以下列出1至20的階乘:
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=12164510040883200020!=2432902008176640000
9樓:洪振梅稅畫
這個問題通常可以應用冪級數得到簡單的解決。
具體有:
求階乘的公式
10樓:匿名使用者
階乘沒有公式,要一個一個的算,
20以內的數的階乘
階乘一般很難計算,因為積都很大。
以下列出1至20的階乘:
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=12164510040883200020!=2432902008176640000
11樓:雪劍
參考資料
12樓:僕菱華橋清
公式:n!=n*(n-1)!
階乘的計算方法
階乘指從1乘以2乘以3乘以4一直乘到所要求的數。
例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。
例如所要求的數是6,則階乘式是1×2×3×..×6,得到的積是720,720就是6的階乘。例如所要求的數是n,則階乘式是1×2×3×…×n,設得到的積是x,x就是n的階乘。
階乘的表示方法
在表達階乘時,就使用「!」來表示。如x的階乘,就表示為x!
他的原理就是反推,如,舉例,求10的階乘=10*9的階乘(以後用!表示階乘)那麼9!=?
,9!=9*8!,8!
=8*7!,7!=7*6!
,6!=6*5!,5!
=5*4!,4!=4*3!
,3!=3*2!,2!=2*1!,1的階乘是多少呢?是1
1!=1*1,數學家規定,0!=1,所以0!
=1!然後在往前推算,公式為n!(n!
為當前數所求的階乘)=n(當前數)*(n-1)!(比他少一的一個數n-1的階乘把公式列出來像後推,只有1的!為1,所以要從1開始,要知道3!
要知道2!就要知道1!但必須從1!
開始推算所以要像後推,如果遍程式演算法可以此公式用一個函式解決,並且巢狀呼叫次函式,,)把數帶入公式為,
1!=1*1
2!=2*1(1!)
3!=3*2(2!)
4=4*6(3!),如果要是程式設計,怎麼解決公式問題呢
首先定義演算法
//演算法,1,定義函式,求階乘,定義函式fun,引數值n,(#include
long
fun(intn)
//long
為長整型,因20!就很大了超過了兆億
(數學家定義數學家定義,0!=1,所以0!=1!,0與1的階乘沒有實際意義)
2,函式體判斷,如果這個數大於1,則執行if(n>1)(往回退算,這個數是10求它!,要從2的階乘值開始,所以執行公式的次數定義為9,特別需要注意的是此處,當前第一次寫入**執行,已經算一次)
求這個數的n階乘(公式為,n!=n*(n-1)!,並且反回一個值,
return
(n*(fun(n-1));(這個公式為,首先這個公式求的是10的階乘,但是求10的階乘就需要,9的階乘,9的階乘我們不知道,所以就把10減1,也就是n-1做為一個新的階乘,從新呼叫fun函式,求它的階乘然後在把這個值返回到
fun(n-1),然後執行n*它返回的值,其實這個公式就是呼叫fun函式的結果,函式值為return
返回的值,(n-1)為引數依次類推,...一值巢狀呼叫fun函式,
到把n-1的值=1,
注意:此時已經執行9次fun()函式算第一次執行,,呼叫幾次fun函式呢?8次函式,所以,n-1執行了9次,n-1=1
,n=2已經呼叫就可以求2乘階值
求階乘的公式階乘的公式是什麼
階乘沒有公式,要一個一個的算,20以內的數的階乘 階乘一般很難計算,因為積都很大。以下列出1至20的階乘 1!1,2!2,3!6,4!24,5!120,6!720,7!5040,8!40320 9!362880 10!3628800 11!39916800 12!479001600 13!62270...
vb求1到n的階乘,VB求1到N的階乘
sum 0 temp 1 for i 1 to n sum sum temp i temp temp i next 用vb求1到n的階乘和的程式編寫 自己編寫函式 private function jiec byval n as integer as long dim i as integer di...
8的階乘是多少,8的階乘等於多少
1 2 3 4 5 6 7 8 40320 11 10 9 8 7 6 5 4 3 2 1 這個就是11的階乘 8!8x7x6x5x4x3x2x1 40320 8的階乘等於多少 1 2 3 4 5 6 7 8 40320階乘的定義 一個正整數的階回乘是所有小答於及等於該數的正整數的積,並且有0的階乘...