1樓:藥青
公式法、累加法、
累乘法、待定係數法、對數變換法、迭代法、數學歸納法、換元法、不動點法、特徵根的方法等等。
型別一歸納—猜想—證明
由數列的遞推公式可寫出數列的前幾項,再由前幾項總結出規律,猜想出數列的一個通項公式,最後用數學歸納法證明.
型別二「逐差法」和「積商法」
(1)當數列的遞推公式可以化為an+1-an=f(n)時,取n=1,2,3,…,n-1,得n-1個式子:
a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1),
且f(1)+f(2)+…+f(n-1)可求得時,兩邊累加得通項an,此法稱為「逐差法」.
(2)當數列的遞推公式可以化為an+1/an=f(n)時,令n=1,2,3,…,n-1,得n-1個式子,即
a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得時,兩邊連乘可求出an,此法稱為「積商法」.
型別三構造法
遞推式是pan=qan-1+f(n)(p、q是不為零的常數),可用待定係數法構造一個新的等比數列求解.
型別四可轉化為型別三求通項
(1)「對數法」轉化為型別三.
遞推式為an+1=qan
2樓:飛苓青蘭
形如:a(n+1)=(aan+b)/(can+d),a,c不為0的分式遞推式都可用不動點
法求。當f(x)=x時,x的取值稱為不動點,不動點是我們在競賽中解決遞推式的基本方法。
典型例子:
a(n+1)=(a(an)+b)/(c(an)+d)
簡單地說就是在遞推中令an=x
代入a(n+1)也等於x
然後構造數列.
(但要注意,不動點法不是萬能的,有的遞推式沒有不動點,但可以用其他的構造法求出通項;有的就不能求出)
令x=(ax+b)/(cx+d)
即cx2+(d-a)x-b=0
令此方程的兩個根為x1,x2,
若x1=x2
則有1/(a(n+1)-x1)=1/(an-x1)+p
其中p可以用待定係數法求解,然後再利用等差數列通項公式求解。
若x1≠x2
則有(a(n+1)-x1)/(a(n+1)-x2)=q((an-x1)/(an-x2)
其中q可以用待定係數法求解,然後再利用等比數列通項公式求解。
【注】形如:a(n+1)=(aan+b)/(can+d),a,c不為0的分式遞推式都可用不動點法求。
讓a(n+1)=an=x,
代入化為關於x的二次方程
(1)若兩根x1不等於x2,有為等比數列,公比由兩項商求出
(2)若兩根x1等於x2,有為等差數列,公差由兩項差求出
若無解,就只有再找其他方法了。
並且不動點一般只用於分式型上下都是一次的情況,如果有二次可能就不行了。
例1:在數列中,a(n+1)=(2an+8)/an,a1=2,求通項
【解】a(n+1)=(2an+8)/an,
a(n+1)=2+8/an令an=x,a(n+1)=x
x=2+8/x
x^2-2x-8=0
x1=-2,x2=4
為等比數列
令(an-4)/(an+2)=bn
b(n+1)/bn=[(a(n+1)-4)/(a(n+1)+2)]/[(an-4)/(an+2)]
=-1/2
b(n+1)=(-1/2)bn
b1=-1/2
bn=(-1/2)^n=(an-4)/(an+2)
an=[4+2*(-1/2)^n]/[1-(-1/2)^n],n>=1
例2:a1=1,a2=1,a(n+2)=
5a(n+1)-6an,
【解】特徵方程為:y²=
5y-6
那麼,m=3,n=2,或者m=2,n=3
於是,a(n+2)-3a(n+1)=2[a(n+1)-3an]
(1)a(n+2)-2a(n+1)=3[a(n+1)-2an]
(2)所以,a(n+1)-3a(n)=-2
^n(3)a(n+1)-2a(n)=-3
^(n-1)
(4)消元消去a(n+1),就是an,an=-3^
(n-1)+2^n.
3樓:大壯田金
這個回答你都不滿意 你真是行 那我也就沒有什麼好說的了
這個回答的確已經很不錯了可系啊
求數列通項公式的方法大全
4樓:匿名使用者
構造法求數列的通項公式
在數列求通項的有關問題中,經常遇到即非等差數列,又非等比數列的求通項問題,特別是給出的數列相鄰兩項是線性關係的題型,在老教材中,可以通過不完全歸納法進行歸納、猜想,然後藉助於數學歸納法予以證明,但新教材中,由於刪除了數學歸納法,因而我們遇到這類問題,就要避免用數學歸納法。這裡我向大家介紹一種解題方法——構造等比數列或等差數列求通項公式。
構造法就是在解決某些數學問題的過程中,通過對條件與結論的充分剖析,有時會聯想出一種適當的輔助模型,以此促成命題轉換,產生新的解題方法,這種思維方法的特點就是「構造」.若已知條件給的是數列的遞推公式要求出該數列的通項公式,此類題通常較難,但使用構造法往往給人耳目一新的感覺. 供參考。
1、構造等差數列或等比數列
由於等差數列與等比數列的通項公式顯然,對於一些遞推數列問題,若能構造等差數列或等比數列,無疑是一種行之有效的構造方法.
例1 設各項均為正數的數列 的前n項和為sn,對於任意正整數n,都有等式: 成立,求 的通項an.
解: , ∴
,∵ ,∴ .
即 是以2為公差的等差數列,且 .
∴ 例2 數列 中前n項的和 ,求數列的通項公式 .
解:∵當n≥2時,
令 ,則 ,且
是以 為公比的等比數列,
∴ .2、構造差式與和式
解題的基本思路就是構造出某個數列的相鄰兩項之差,然後採用迭加的方法就可求得這一數列的通項公式.
例3 設 是首項為1的正項數列,且 ,(n∈n*),求數列的通項公式an.
解:由題設得 .
∵ , ,∴ .∴ .
例4 數列 中, ,且 ,(n∈n*),求通項公式an.
解:∵∴ (n∈n*)
3、構造商式與積式
構造數列相鄰兩項的商式,然後連乘也是求數列通項公式的一種簡單方法.
例5 數列 中, ,前n項的和 ,求 .
解: ,
∴ ∴
4、構造對數式或倒數式
有些數列若通過取對數,取倒數代數變形方法,可由複雜變為簡單,使問題得以解決.
例6 設正項數列 滿足 , (n≥2).求數列 的通項公式.
解:兩邊取對數得: , ,設 ,則
是以2為公比的等比數列, .
, , ,
∴ 例7 已知數列 中, ,n≥2時 ,求通項公式.
解:∵ ,兩邊取倒數得 .
可化為等差數列關係式.∴
如何遞推數列的求通項公式 10
5樓:匿名使用者
a(n+2)+p*a(n+1)+q*a(n)=0的遞推式. 其特徵方程為 x^2+p*x的形式(其中a,b可通過代入原遞推公式求出), 然後再用初始條件解得通項.
6樓:匿名使用者
具體點,最好來個具體的題
求數列通項公式的方法
7樓:匿名使用者
求數列通項公式常用以下幾種方法:
一、題目已知或通過簡單推理判斷出是等比數列或等差數列,直接用其通項公式。
例:在數列中,若a1=1,an+1=an+2(n1),求該數列的通項公式an。
解:由an+1=an+2(n1)及已知可推出數列為a1=1,d=2的等差數列。所以an=2n-1。此類題主要是用等比、等差數列的定義判斷,是較簡單的基礎小題。
二、已知數列的前n項和,用公式
s1 (n=1)
sn-sn-1 (n2)
例:已知數列的前n項和sn=n2-9n,第k項滿足5
(a) 9 (b) 8 (c) 7 (d) 6
解:∵an=sn-sn-1=2n-10,∴5<2k-10<8 ∴k=8 選 (b)
此類題在解時要注意考慮n=1的情況。
三、已知an與sn的關係時,通常用轉化的方法,先求出sn與n的關係,再由上面的(二)方法求通項公式。
例:已知數列的前n項和sn滿足an=snsn-1(n2),且a1=-,求數列的通項公式。
解:∵an=snsn-1(n2),而an=sn-sn-1,snsn-1=sn-sn-1,兩邊同除以snsn-1,得---=-1(n2),而-=-=-,∴ 是以-為首項,-1為公差的等差數列,∴-= -,sn= -,
再用(二)的方法:當n2時,an=sn-sn-1=-,當n=1時不適合此式,所以,
- (n=1)
- (n2)
四、用累加、累積的方法求通項公式
對於題中給出an與an+1、an-1的遞推式子,常用累加、累積的方法求通項公式。
例:設數列是首項為1的正項數列,且滿足(n+1)an+12-nan2+an+1an=0,求數列的通項公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解為[(n+1)an+1-nan](an+1+an)=0
又∵是首項為1的正項數列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,這n-1個式子,將其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈n*)
8樓:111尚屬首次
有以下四種基本方法:
( 1 )直接法.就是由已知數列的項直接寫出,或通過對已知數列的項進行代數運算寫出.
( 2 )觀察分析法.根據數列構成的規律,觀察數列的各項與它所對應的項數之間的內在聯絡,經過適當變形,進而寫出第n項a n 的表示式即通項公式.
( 3 )待定係數法.求通項公式的問題,就是當n= 1 , 2 , … 時求f(n),使f(n)依次等於a 1 ,a 2 , … 的問題.因此我們可以先設出第n項a n 關於變數n的表示式,再分別令n= 1 , 2 , … ,並取a n 分別等於a 1 ,a 2 , … ,然後通過解方程組確定待定係數的值,從而得出符合條件的通項公式.
( 4 )遞推歸納法.根據已知數列的初始條件及遞推公式,歸納出通項公式.
9樓:小南vs仙子
有人總結過,相信對你有幫助:
10樓:貢楠尹冬卉
一、題目已知或通過簡單推理判斷出是等比數列或等差數列,直接用其通項公式。
例:在數列中,若a1=1,an
1=an
2(n1),求該數列的通項公式an。
解:由an
1=an
2(n1)及已知可推出數列為a1=1,d=2的等差數列。所以an=2n-1。此類題主要是用等比、等差數列的定義判斷,是較簡單的基礎小題。
二、已知數列的前n項和,用公式
s1(n=1)
sn-sn-1
(n2)
例:已知數列的前n項和sn=n2-9n,第k項滿足5
(a)9
(b)8
(c)7
(d)6
解:∵an=sn-sn-1=2n-10,∴5<2k-10<8
∴k=8
選(b)
此類題在解時要注意考慮n=1的情況。
三、已知an與sn的關係時,通常用轉化的方法,先求出sn與n的關係,再由上面的(二)方法求通項公式。
例:已知數列的前n項和sn滿足an=snsn-1(n2),且a1=-,求數列的通項公式。
解:∵an=snsn-1(n2),而an=sn-sn-1,snsn-1=sn-sn-1,兩邊同除以snsn-1,得---=-1(n2),而-=-=-,∴
是以-為首項,-1為公差的等差數列,∴-=
-,sn=
-,再用(二)的方法:當n2時,an=sn-sn-1=-,當n=1時不適合此式,所以,
-(n=1)
-(n2)
四、用累加、累積的方法求通項公式
對於題中給出an與an
1、an-1的遞推式子,常用累加、累積的方法求通項公式。
例:設數列是首項為1的正項數列,且滿足(n
1)an
12-nan2
an1an=0,求數列的通項公式
解:∵(n
1)an
12-nan2
an1an=0,可分解為[(n
1)an
1-nan](an
1an)=0
又∵是首項為1的正項數列,∴an1an
≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,這n-1個式子,將其相乘得:∴
-=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈n*)
五、用構造數列方法求通項公式
題目中若給出的是遞推關係式,而用累加、累積、迭代等又不易求通項公式時,可以考慮通過變形,構造出含有
an(或sn)的式子,使其成為等比或等差數列,從而求出an(或sn)與n的關係,這是近
一、二年來的高考熱點,因此既是重點也是難點。
例:已知數列中,a1=2,an
1=(--1)(an
2),n=1,2,3,……
(1)求通項公式
(2)略
解:由an
1=(--1)(an
2)得到an
1--=
(--1)(an--)
∴是首項為a1--,公比為--1的等比數列。
由a1=2得an--=(--1)n-1(2--)
,於是an=(--1)n-1(2--)
-又例:在數列中,a1=2,an
1=4an-3n
1(n∈n*),證明數列是等比數列。
證明:本題即證an
1-(n
1)=q(an-n)
(q為非0常數)
由an1=4an-3n
1,可變形為an
1-(n
1)=4(an-n),又∵a1-1=1,
所以數列是首項為1,公比為4的等比數列。
若將此問改為求an的通項公式,則仍可以通過求出的通項公式,再轉化到an的通項公式上來。
又例:設數列的首項a1∈(0,1),an=-,n=2,3,4……(1)求通項公式。(2)略
解:由an=-,n=2,3,4,……,整理為1-an=--(1-an-1),又1-a1≠0,所以是首項為1-a1,公比為--的等比數列,得an=1-(1-a1)(--)n-1
高中數學數列求和和求通項公式的方法
內容來自使用者 袁會芳 課時跟蹤檢測 三十一 數列求和 一抓基礎,多練小題做到眼疾手快 1 2019 鎮江調研 已知是等差數列,sn為其前n項和,若a3 a7 8,則s9 解析 在等差數列中,由a3 a7 8,得a1 a9 8,所以s9 36.答案 36 2 數列的前n項和為 解析 由題意得an 1...
高中數學常用的求數列通項的方法
我已經將找到的連結傳送到你的資訊中了。比較全面了,我花了好長時間蒐集。希望對你有所幫助。常規方法 a n s n s n 1 還可以用來數學歸納法自 設p n 是關於自然數bain的一個命題,如果 1 p 1 真du,2 由p k 為真的假設可推出 zhip k 1 為真,那麼p n 對一切自dao...
數列 7,15,24,34,45的通項公式是什麼
a2 a1 8 a3 a2 9 an a n 1 n 6 an a1 8 n 6 n 2 1 2 14 n n 1 2 n 2 13n 14 2 an n 2 13n 2 找規律的方法 1 標出序列號 找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通...