已知橢圓C x2a2 y2b2 1 a b 0 的離心率為

2021-05-05 23:21:05 字數 3405 閱讀 2230

1樓:戒貪隨緣

原題是:已知橢圓e:x^2/a^2+y^2/b^2=1(a>b>0)的離心率為1/2,且經過p(1,3/2),直線l:

y=kx+m不經過該點p,與橢圓交與ab兩點, 求△abo的面積最大值.

由已知a=2c且b=(√3)c且(1/a^2)+(9/(2b)^2)=1

解得a=2,b=(√3)

橢圓方程:x^2/4+y^2/3=1

設a(x1,kx1+m),b(x2,kx2+m)

向量oa=(x1,kx1+m),向量ob=(x2,kx2+m)

由向量法求三角形面積公式得△oab的面積

s=(1/2)|x1·(kx2+m)-x2·(kx1+m)|=(1/2)|m||x1-x2|

由x^2/4+y^23=1且y=kx+m消去y並化簡得

(4k^2+3)x^2+8kmx+4m^2-12=0

當△=(8km)^2-4(4k^2+3)(4m^2-12)=48((4k^2+3)-m^2)>0時

設t=m^2/(4k^2+3),則m^2=(4k^2+3)t,且0≤t<1

|m||x1-x2|=|m|(√△)/(4k^2+3)=(4√3)(√(m^2)(4k^2+3)-m^4)/(4k^2+3)

=(4√3)(√(4k^2+3)^2·t-(4k^2+3)^2·t^2)/(4k^2+3)

=(4√3)√(t(1-t))

≤(4√3)(t+(1-t)))/2 (t=1/2時取「=」)

=2√3

即△oab的面積s≤(1/2)·(2√3)=√3

當t=m^2/(4k^2+3)=1/2 即2m^2=4k^2+3 取「=」

因直線l不過(1,3/2),滿足2m^2=4k^2+3的(m,k)應將m+k=3/2的值除外.

所以△abo面積的最大值是√3。

希望能幫到你!

橢圓c:x2a2+y2b2=1(a>b>0)的離心率為12,其左焦點到點p(2,1)的距離為10.(ⅰ)求橢圓c的標準方

2樓:血刺楓默

(ⅰ)∵左焦點

來(-c,0)到自點p(2,1)的距離為

10,∴

(2+c)+1=

10,解得c=1.

又e=ca=1

2,解得a=2,∴b2=a2-c2=3.

∴所求橢圓c的方程為:x4+y

3=1.

(ⅱ)設a(x1,y1),b(x2,y2),由y=kx+mx4

+y3=1得(3+4k2)x2+8mkx+4(m2-3)=0,△=64m2k2-16(3+4k2)(m2-3)>0,化為3+4k2>m2.

∴x+x

=?8mk

3+4k,xx

=4(m

?3)3+4k

.y1y2=(kx1+m)(kx2+m)=

在平面直角座標系xoy中,已知橢圓c:x2/a2+y2/b2=1(a>b>0),過點p(1,3/2

3樓:匿名使用者

^(1) 橢圓

e = 1/2, 則 a = 2c, a^2 = 4c^2 = 4(a^2-b^2),

得 3a^2 = 4b^2

橢圓過點 p(1,3/2), 則 1/a^2 + 9/(4b^2) = 1,

於是 1/a^2 + 9/(3a^2) = 1, 得 a = 2, b = √3,

橢圓方程撒是 x^2/4 + y^2/3 = 1.

(2) 橢圓c的右焦點 f(1, 0), 設直線 l 斜率為 k,

則直線 l方程是 y = k(x-1), 代入 x^2/4 + y^2/3 = 1,

得 3x^2+4k^(x-1)^2 = 12,

即 (3+4k^2)x^2-8k^2x+(4k^2-12) = 0

解得 x = [4k^2±6√(1+k^2)]/(3+4k^2),

y = k(x-1) = k[-3±6√(1+k^2)]/(3+4k^2)

ap 斜率 /

bp 斜率 /

太複雜了

4樓:半個_救世主

第一問,根據a>b>0判斷橢圓在座標軸上的大致形狀,然後根據橢圓的離心率公式和過點p(1,3/2)代入,可以得到一個一元二次方程組,解出a 和b的值。

第二問,根據第一問判斷出來的橢圓形狀,作圖,設c點座標為(x,y)將x代入橢圓,把y用x表示,面積t用一個和x相關的公式表達出來,之後經過代數變換,大概會用到均值不等式,然後求出最大值。

而且你那裡是平方,那裡是2,平方用x^2

5樓:若即若離

我很想為你解答,因為一遇到橢圓,雙曲線,我就很敢興趣,無奈上了大學以後,高中的知識全都還給老師了。

已知橢圓c:x2a2+y2b2=1(a>b>0)的離心率為12,右焦點為f,右頂點a在圓f:(x-1)2+y2=γ2(γ>0)

6樓:江公主熬都

(ⅰ)由題意可得c=1,----------------------------------(1分)

又由題意可得ca=1

2,所以a=2,----------------------------------(2分)

所以b2=a2-c2=3,----------------------------------(3分)

所以橢圓c的方程為x4+y

3=1.---------------------------------(4分)

所以橢圓c的右頂點a(2,0),--------------------------------(5分)

代入圓f的方程,可得r2=1,

所以圓f的方程為:(x-1)2+y2=1.------------------------------(6分)

(ⅱ)假設存在直線l滿足題意.

由(ⅰ)可得oa是圓f的直徑,-----------------------------(7分)

所以op⊥ab.------------------------------(8分)

由點p是ab中點,可得|ob|=|oa|=2.--------------------------------(9分)

設點b(x1,y1),則由題意可得x4+y

3=1.--------------------------------(10分)

又因為直線l的斜率不為0,所以x

<4,-------------------------------(11分)

所以|ob|2=x1

2+y1

2=3+x

4<4,-------------------------------(13分)

這與|oa|=|ob|矛盾,所以不存在滿足條件的直線l.--------------------------(14分)

已知橢圓C x2a2 y2b2 1 a b 0 的左 右頂點的座標分別為A( 2,0),B(2,0),離心率e

由題意fc,bc的中垂線方程分別為x a?c2,y?b2 a b x?a2 於是圓心座標為 a?c2,b ac2b 4分 m n a?c2 b ac2b 0,即ab bc b2 ac 0,即 a b b c 0,所以b c,於是b2 c2 c 即a2 2c2,所以e 1 2,又0 e 1,22 e ...

已知橢圓C x2a2 y2b2 1(a b 0)的右焦點F

1 由題意得,a c 1,a c 4,解得,a 2,c 1,由b2 a2 c2 3,則橢圓c的標準方程為 x4 y 3 1 內2 設過點容f且斜率不為零的直線bc y k x 1 與橢圓方程聯立,消去y,得到 3 4k2 x2 8k2x 4k2 12 0,設b x1,y1 c x2,y2 則x1 x...

已知橢圓C x2a2 y2b2 1(a b 0),兩個焦點分

設橢來圓離心率為e,設源f2的座標為 c,0 bai其中c2 a2 b2,設l的方程du為y kx m,則l與y軸的交zhi點為 0,m m kc,所以b點的dao座標為 c 2,kc 2 將b點座標代入橢圓方程得ca c b?k2 4,即e2 k1e 1 4,所以k2 4 e2 1 e 1 4 5...