一元二次方程配方法怎麼配方

2021-08-16 01:55:41 字數 1700 閱讀 9271

1樓:假面

用配方法解一元二次方程的一般步驟:

1、把原方程化為的形式;

2、將常數項移到方程的右邊;方程兩邊同時除以二次項的係數,將二次項係數化為1;

3、方程兩邊同時加上一次項係數一半的平方;

4、再把方程左邊配成一個完全平方式,右邊化為一個常數;

5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。

2樓:火星

1.轉化: 將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式   2.

移項: 常數項移到等式右邊   3.係數化1:

二次項係數化為1   4.配方: 等號左右兩邊同時加上一次項係數一半的平方   5.

求解: 用直接開平方法求解 整理 (即可得到原方程的根)   代數式表示方法:注(^2是平方的意思.

)   ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)   例:解方程2x^2+4=6x   1. 2x^2-6x+4=0   2.

x^2-3x+2=0   3. x^2-3x=-2   4. x^2-3x+2.

25=0.25 (+2.25:

加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等)   5. (x-1.5)^2=0.

25 (a^2+2b+1=0 即 (a+1)^2=0)   6. x-1.5=±0.

5   7. x1=2   x2=1 (一元二次方程通常有兩個解,x1 x2)

編輯本段二次函式配方法技巧

y=ax&sup要的一項,往往在解決方程,不等式,函式中需用,下面詳細說明:   首先,明確的是配方法就是將關於兩個數(或代數式,但這兩一定是平方式),寫成(a+b)平方的形式或(a-b)平方的形式: 將(a+b)平方的得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必須要有a^2,2ab,b^2 則選定你要配的物件後(就是a^2和b^2,這就是核心,一定要有這兩個物件,否則無法使用配方公式),就進行新增和去增,例如:

原式為a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式為a^2+ 2b^2 解:

a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 這就是配方法了, 附註:a或b前若有係數,則看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2)

3樓:匿名使用者

配方法:用配方法解方程ax2+bx+c=0 (a≠0)先將常數c移到方程右邊:ax2+bx=-c將二次項係數化為1:x2+x=-

方程兩邊分別加上一次項係數的一半的平方:x2+x+( )2=- +( )2

方程左邊成為一個完全平方式:(x+ )2=當b2-4ac≥0時,x+ =±

∴x=(這就是求根公式)

例2.用配方法解方程 3x2-4x-2=0解:將常數項移到方程右邊 3x2-4x=2將二次項係數化為1:x2-x=

方程兩邊都加上一次項係數一半的平方:x2-x+( )2= +( )2配方:(x-)2=

直接開平方得:x-=±

∴x=∴原方程的解為x1=,x2=

一元二次方程求解詳細過程,一元二次方程求根公式詳細的推導過程

付費內容限時免費檢視 回答一,公式法,先判斷德爾塔德大小可以通過 的值來判斷一元二次方程有幾個根 1.當 0時 沒有實數根 2.當 0時 x有兩個相同的實數根 即x1 x2 3.當 0時 x有兩個不相同的實數根 當判斷完成後,若方程有根可根屬於2 3兩種情況方程有根則可根據公式 x b b 2 4a...

在一元二次方程中,怎麼計算出,在一元二次方程中,怎麼計算出

題裡有無解或者沒有交點的話,就告訴你b2 4ac 0 一元二次方程為什麼 的 小於0,就大於零?30 你是不是想知道 b2 4ac是怎麼來的啊?假設方程為 ax2 bx c 0 a 0 兩邊同除以a x2 b a x c a 0 配方法解方程 x2 b a x b 2a 2 c a b 2a 2 0...

關於的一元二次方程,關於x的一元二次方程x2m3xm201證明方程總有兩個不相等的實數根2設這個方程的兩個

1 證明 來 m 3 源 2 4m2 5 baim 3 5 2 36 5,du 5 m 3 5 2 0,5 m 3 5 2 36 5 0,即 0,方程有兩個不相等的實數zhi根 2 解dao x1和x2異號.理由如下 x1?x2 m2 0,x1,x2異號 3 解 根據題意得x1 x2 m 3,x1?...