1樓:匿名使用者
原函式的微積分
就是導函式,導函式的定積分就是原函式!其中,原函式與導內函式之間的簡單容轉換,是有公式可用的!先熟記,再在練習中鞏固提高。
那些複雜的轉換,在高中階段,也是以簡單的為基礎。所以,多做練習,打好基礎。做多點題的型別,可達到舉一反三的效果。加油!
2樓:靈逸清秋
倒數求積分就是原函式
求己知導數求原函式的公式. 10
3樓:要你娘命的
已知導數求原函式的公式???
我是數學專業大三的,可以很負責的告訴你,沒有這樣一個萬能公式。
有三種方法可以解決已知導數求原函式:
1.記住常用的幾個型別導數,大部分簡單的都是那幾個變化之後得來的;
2.利用積分將求導過程逆向;
3.利用已知導數建立微分方程進行求解。
上面三種方法都有一定的侷限性,具體看導數是什麼情況。
4樓:匿名使用者
y=f(x)=c (c為常數),則f'(x)=0
f(x)=x^n (n不等於0) f'(x)=nx^(n-1) (x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等於1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logax f'(x)=1/xlna (a>0且a不等於1,x>0)
f(x)=lnx f'(x)=1/x (x>0)
f(x)=tanx f'(x)=1/cos^2 x
f(x)=cotx f'(x)=- 1/sin^2 x
導數運演算法則如下
(f(x)+/-g(x))'=f'(x)+/- g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
由後往前推便可以。
5樓:匿名使用者
參考高等數學! 還有啊,一般的是要背下來的~
求導數的原函式是有幾種常見方法
6樓:左手半夏右手花
^1、公式法
例如∫x^ndx=x^(n+1)/(n+1)+c ∫dx/x=lnx+c ∫cosxdx=sinx 等不定積分公式都應牢記,對於基本函式可直接求出原函式。
2、換元法
對於∫f[g(x)]dx可令t=g(x),得到x=w(t),計算∫f[g(x)]dx等價於計算∫f(t)w'(t)dt。 例如計算∫e^(-2x)dx時令t=-2x,則x=-1/2t,dx=-1/2dt,代入後得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。
3、分步法
對於∫u'(x)v(x)dx的計算有公式: ∫u'vdx=uv-∫uv'dx(u,v為u(x),v(x)的簡寫) 例如計算∫xlnxdx,易知x=(x^2/2)'則: ∫xlnxdx=x^2lnx/2-1/2∫xdx =x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2) 通過對1/4(2x^2lnx-x^2)求導即可得到xlnx。
4、綜合法
綜合法要求對換元與分步靈活運用,如計算∫e^(-x)xdx。
求導數的原函式是有幾種常見方法
7樓:府今藺心
1、公式法
例如∫x^ndx=x^(n+1)/(n+1)+c∫dx/x=lnx+c
∫cosxdx=sinx
等不定積分公式都應牢記,對於基本函式可直接求出原函式。
2、換元法
對於∫f[g(x)]dx可令t=g(x),得到x=w(t),計算∫f[g(x)]dx等價於計算∫f(t)w'(t)dt。
例如計算∫e^(-2x)dx時令t=-2x,則x=-1/2t,dx=-1/2dt,代入後得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。對其求導驗算一下可知是正確的。
3、分步法
對於∫u'(x)v(x)dx的計算有公式:
∫u'vdx=uv-∫uv'dx(u,v為u(x),v(x)的簡寫)例如計算∫xlnxdx,易知x=(x^2/2)'則:
∫xlnxdx=x^2lnx/2-1/2∫xdx=x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2)通過對1/4(2x^2lnx-x^2)求導即可得到xlnx。
4、綜合法
綜合法要求對換元與分步靈活運用,如計算∫e^(-x)xdx,這個就留著自己作為練習吧。
關於對基本函式求原函式可通過導數表直接得出,可以參考我的詞條。
8樓:慄雅靜鍾福
我說簡單易懂點吧!
導數的意義在於數型結合。就像你舉的例子y=x^2,導數是y=2x。就是以這條拋物線上的任一點為切點做拋物線的切線,斜率都為2x。
至於推導,要用到極限的思想,不知道你是高中還是大學,所以先忽略不計。
導數不一定都有斜率,因為求導數的函式影象不一定是直線。你的意思應該是說二次求導得出的二階導數吧。
二階導數作用:1,求極值,把能滿足一階導數等於0的點帶入二階導數表示式,求得結果大於0,此點就是極小值點,小於0就是極大值點。2,畫圖,個人認為用數型結合的方法可以很巧妙的解決很多數學問題,而二階導數在此起了很大作用。
還是用你舉的例子,二階導數等於2,是大於0的,所以一階導數的變化是遞增的,原函式的曲線是上凹的。反之,若原函式二階導數小於0,那麼,原函式的曲線是下凹的。3,還有些題目不會設定什麼情境,就直接要你求二階導數或是高階,反正幾階就求導幾次。
導數還可以求不規則圖形的面積,體積,這也是導數的實際運用意義所在。導數還可以用於經濟問題中邊際,彈性,當然如果你不是學經濟的,也就沒必要知道了,數學題目中就算有關於此的應用題也只不過就是借用這個情境,仔細讀題,肯定能解。
我的回答很粗糙,不知道你能看懂多少。總之,導數很有用,很有趣,努力的學吧!
如何求一個導數的原函式?
9樓:很多很多
求一個導數的原函式使用積分,積分
是微分的逆運算,即知道了函式的導函式,反求原函式。
積分求法:
1、積分公式法。直接利用積分公式求出不定積分。
2、換元積分法。換元積分法可分為第一類換元法與第二類換元法。
(1)第一類換元法(即湊微分法)。通過湊微分,最後依託於某個積分公式。進而求得原不定積分。
(2)第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。
3、分部積分法。設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu
兩邊積分,得分部積分公式∫udv=uv-∫vdu。
10樓:匿名使用者
已知導數求原函式就是求積分
象這樣的複合函式一般是用變數代換。
f(x)=∫√(4-x^2)dx
令x=2sint
則 dx=2costdt
f(t)=∫2cost*2costdt
=2∫2cos^tdt
=2∫(cos2t+1)dt
=sin2t+2t
然後通過 sint=x/2
解得cost=√(1-x^2/4)
得到sin2t=2sint*cost=x/2*√(4-x^2)再由 sint=x/2,得到 t=arcsin(x/2)所以f(x)=x/2*√(4-x^2)+arcsin(x/2)一般有根號大多通過三角代換來求積分
√(1+x^2) 時 x=1/tant
√(1-x^2)時 x=sint 或者 x=cost√(x^2-1)時 x=csct
靈活執行三角公式就行了。
11樓:匿名使用者
主要是用到變換,將根號裡面的經過適當的變換去掉根號,之後就用一些積分公式將其積分出來,最後換成原來變數!比如這個題,我們設x=2cost,這樣就可以去掉根號啦!dx=-2sintdt
之後你就只要求f'(t)=2sint*(-2sint)=-4(sint)^2,對於這個積分先將次,在求積分!試試吧!
導數是複合函式如何求它的原函式,導數是複合函式,如何求原函式
求有複合函式導數的不定積分 反導數 通常都用換元積分法 這題的導數結果非常短,但積分結果可以非常長的 過程如下 答案是 1 8 4x 1 4x 2 2x 1 3 16 ln 2 4x 2 2x 1 4x 1 c 先將根號裡的二次多項式配方,4x 2 2x 1 2x 1 2 2 3 2 2,然後作三角...
這個怎麼求導數,如何求一個導數的原函式?
本題用到函式和的求導公式,同時用到自然對數,反正切函式的求導公式,具體步驟如下圖所示。如何求一個導數的原函式?求一個導數的原函式使用積分,積分 是微分的逆運算,即知道了函式的導函式,反求原函式。積分求法 1 積分公式法。直接利用積分公式求出不定積分。2 換元積分法。換元積分法可分為第一類換元法與第二...
原函式的N階導數和逼近或者說約等於原函式麼
不等於原函式。n階導數應該是泰勒級數吧,一般來說會和原函式差個高階無窮小望採納 反函式的導數與原函式的導數有什麼關係 原函式的導數等於反函式導數的倒數。設y f x 其反函式為x g y 可以得到微分關係式 dy df dx dx dx dg dy dy 那麼,由導數和微分的關係我們得到,原函式的導...