1樓:匿名使用者
在解有關絕對值不等式時,都是先找零點,在分類討論。零點的找法是就是讓絕對智力的的多項式=0,找出x的值,再根據x 的值分類討論
2樓:竟然被猜中了
其實用平方法解答一類絕對值不等式很管用
3樓:豆豆紅豆母女
/a/=3
a=3或-3
解絕對值不等式時,有幾種常見的方法
4樓:喵喵喵
一、 絕對值定義法
對於一些簡單的,一側為常數的含不等式絕對值,直接用絕對值定義即可,
1、如|x| < a在數軸上表示出來。利用數軸可將解集表示為−a< x < a
2、|x| ≥ a同理可在數軸上表示出來,因此可得到解集為x≥ a或x≤ a
3、|ax +b| ≥ c型,利用絕對值性質化為不等式組−c ≤ ax + b ≤ c,再解不等式組。
二、平方法
對於不等式兩邊都是絕對值時,可將不等式兩邊同時平方。
解不等式 |x+ 3| > |x− 1|將等式兩邊同時平方為(x + 3)2 > (x − 1)2得到x2 + 6x + 9 > x2 − 2x + 1之後解不等式即可,解得x > −1
三、零點分段法
對於不等式中含有有兩個及以上絕對值,且含有常數項時,一般使用零點分段法。例 解不等式|x + 1| + |x − 3| > 5
在數軸上可以看出,數軸可以分成x < −1,−1 ≤ x < 3, x ≥ 3三個區間,由此進行分類討論。
當x < −1時,因為x + 1 < 0, x − 3 < 0所以不等式化為 −x− 1 −x + 3 > 5解得x < −322.當−1 ≤x < 3時, 因為x + 1 > 0,x− 3 < 0所以不等式化為x + 1 − x + 3 > 5無解。
當 x ≥ 3時 因為x + 1 > 0 ,x − 3 > 0所以不等式化為x + 1 + x− 3 > 5解得x >72綜上所述,不等式的解為x < −32或x >72。
擴充套件資料
1、實數的絕對值的概念
(1)|a|的幾何意義
|a|表示數軸上實數a對應的點與原點之間的距離.
(2)兩個重要性質
1(i)|ab|=|a||b|
2|a|<|b|⇔a2(3)|x-a|的幾何意義:數軸上實數x對應的點與實數a對應的點之間的距離,或數軸上表示x-a的點到原點的距離.
(4)|x+a|的幾何意義:數軸上實數x對應的點與實數-a對應的點之間的距離,或數軸上表示x+a的點到原點的距離。
2、絕對值不等式定理
(1)定理:對任意實數a和b,有|a+b|≤|a|+|b|,當且僅當ab≥0時,等號成立.
(2)定理的另一種形式:對任意實數a和b,有|a-b|≤|a|+|b|,當且僅當ab≤0時,等號成立.
絕對值不等式定理的完整形式:|a|-|b|≤|a±b|≤|a|+|b|.
其中,(1)|a+b|=|a|-|b|成立的條件是ab≤0,且|a|≥|b|;
(2)|a+b|=|a|+|b|成立的條件是ab≥0;
(3)|a-b|=|a|-|b|成立的條件是ab≥0,且|a|≥|b|;
(4)|a-b|=|a|+|b|成立的條件是ab≤0.
5樓:科學普及交流
絕對值不等式解法的基本思路是:去掉絕對值符號,把它轉化為一般的不等式求解,轉化的方法一般有:(1)絕對值定義法;(2)平方法;(3)零點區域法。
6樓:
兩種手段:一,分類討論;二,應用絕對值不等式性質。
絕對值不等式的解法
7樓:尹六六老師
|零點分段法。
抄
例如|襲x+1|+|x+2|>4這個不等式;
解:在數
bai軸上標出-1,-2這兩du個點。
(並分為三個區域:即zhix小於等於-2,x大於dao-2且小於-1,x大於等於-1 注意要做到不重不漏!)
所以
1當x≤-2時,(x+1為負 所以取相反數 x+2也一樣 )
-(x+1)-(x+2)>4 解得x<-3.5
又因為x≤-2 (前提條件)
所以x<-3.5
2當-2-x-1+x+2>4
解得:1>4 所以 解集為無解!
3當x>-1時 (都為正 倆絕對值均可直接去除)
得x+1+x+2>4 解得:x>0.5
又因為x>-1 所以x>0.5
綜合123 得解集為x大於0.5或x小於-3.5
含絕對值的不等式有那幾種特別的解法
8樓:匿名使用者
人教a版普通高中數學課程標準實驗教科書(選修4-5)《不等式選講》是根據教育部制訂的《普通高中數學課程標準(實驗)》(以下簡稱課程標準)的選修4系列第5專題「不等式選講」的要求編寫的。
根據課程標準,本專題介紹一些重要的不等式和它們的證明、數學歸納法和它的簡單應用。
一、內容與要求
1.回顧和複習不等式的基本性質和基本不等式。
2.理解絕對值的幾何意義,並能利用絕對值不等式的幾何意義證明以下不等式:
(1)∣a+b∣≤∣a∣+∣b∣;(2)∣a-b∣≤∣a-c∣+∣c-b∣;
(3)會利用絕對值的幾何意義求解以下型別的不等式:
∣ax+b∣≤c;∣ax+b∣≥c;∣x-c∣+∣x-b∣≥a。
3.認識柯西不等式的幾種不同形式。理解它們的幾何意義。
(1)證明柯西不等式的向量形式:|α||β|≥|α·β|。
(2)證明:(a2+b2)(c2+d2)≥(ac+bd)2。
(3)證明:
≥ 。4.用引數配方法討論柯西不等式的一般情況:
5.用向量遞迴方法討論排序不等式。
6.瞭解數學歸納法的原理及其使用範圍,會用數學歸納法證明一些簡單問題。
7.會用數學歸納法證明貝努利不等式:
(1+x)n >1+nx(x>-1,n為正整數)。
瞭解當n為實數時貝努利不等式也成立。
8.會用上述不等式證明一些簡單問題。能夠利用平均值不等式、柯西不等式求一些特定函式的極值。
9.通過一些簡單問題了解證明不等式的基本方法:比較法、綜合法、分析法、反證法、放縮法。
二、內容安排
本專題內容分成四講,結構如下圖所示:
本專題的內容是在初中階段掌握了不等式的基本概念,學會了一元一次不等式、一元一次不等式組的解法,多數學生在學習高中必修課五個模組的基礎上的.作為一個選修專題,教科書在內容的呈現上保持了相對的完整性.
第一講是「不等式和絕對值不等式」,它是本專題的最基本內容,也是其餘三講的基礎.
本講的第一部分類比等式的基本性質,從「數與運算」的基本思想出發討論不等式的基本性質,這是關於不等式在運算方面的一些最基本法則.接著討論基本不等式,介紹了基本不等式的一個幾何解釋:「直角三角形斜邊上的中線不小於斜邊上的高」,並把基本不等式推廣到三個正數的算術—幾何平均不等式.對於一般形式的均值不等式,則只作簡單介紹,不給出證明.在此基礎上,介紹了它們在解決實際問題中的一些應用,如最基本的等周問題,簡單的極值問題等。
第二部分討論了有關絕對值不等式的性質及絕對值不等式的解法.絕對值是與實數有關的一個基本而重要的概念,討論關於絕對值的不等式具有重要的意義.
絕對值三角不等式是一個基本的結論,教科書首先引導學生藉助於實數在數軸上的表示和絕對值的幾何意義,引導學生從數的運算角度**歸納出絕對值三角不等式,接著聯絡向量形式的三角不等式,得到絕對值三角不等式的幾何解釋,最後用代數方法給出證明.這樣,數形結合,引導學生多角度認識這個不等式,逐步深化對它的理解.利用絕對值三角不等式可以解決形如 的函式的極值問題,教科書安排了一個這樣的實際問題。
對於解含有絕對值的不等式,教科書只討論了兩種特殊型別不等式的解法,而不是系統地對這個問題進行研究。教科書引導學生**了形如 或 的不等式的解法,以及形如 或 的不等式的解法.學生通過這兩類含有絕對值的不等式能夠基本學到解含有絕對值的不等式的一般思想和方法。
第二講是「證明不等式的基本方法」.對於不等式的深入討論必須首先掌握一些基本的方法,所以本講內容也是本專題的一個基礎內容。本講通過一些比較簡單的問題,介紹了證明不等式的幾種常用而基本的方法:比較法、綜合法、分析法、反證法和放縮法.
比較法是證明不等式的最基本的方法,比較法可以分為兩種,一種是相減比較法,它的依據是:
另一種是相除比較法,是把不等式兩邊相除,轉化為比較所得商式與1的大小關係,它的依據是:當b>0時,
在比較法的兩種方法中,相減比較法又是最基本而重要的一種方法。
在證明不等式的過程中,根據對於不等式的條件和結論不同探索方向作分類,證明方法又可以分為分析法和綜合法。在證明不等式時,可以從已知條件出發逐步推出結論的方法是綜合法;尋找結論成立的充分條件,從而證明不等式的方法就是分析法.
證明不等式的方法還可以分為直接證法和間接證法,反證法是一種間接證法.它從不等式結論的反面出發,即假設要證明的結論不成立,經過正確的推理,得出矛盾結果,從而說明假設錯誤,而要證的原不等式結論成立.
在證明不等式的過程中,有時通過對不等式的某些部分作適當的放大或縮小達到證明的目的,這就是所謂的放縮法.
教科書對以上方法都結合例項加以介紹。本講內容對進一步討論不等式提供了思想方法的基礎.
本講的教學內容中,用反證法和放縮法證明不等式是新的課程標準才引入到中學數學教學中的內容。
第三講是「柯西不等式和排序不等式」.本講介紹兩個基本的不等式:柯西不等式和排序不等式,以及它們的簡單應用.
柯西不等式是基本而重要的不等式,是推證其他許多不等式的基礎,有著廣泛的應用.教科書首先介紹二維形式的柯西不等式,再從向量的角度來認識柯西不等式,引入向量形式的柯西不等式,再介紹一般形式的柯西不等式,以及柯西不等式在證明不等式和求某些特殊型別的函式極值中的應用。
在介紹了二維形式的柯西不等式的基礎上,教科書引導學生在平面直角座標系中,根據兩點間的距離公式以及三角形的邊長關係,從幾何意義上發現二維形式的三角不等式。接著藉助二維形式的柯西不等式證明了三角不等式。在一般形式的柯西不等式的基礎上,教科書安排了一個**欄目,讓學生通過**得出一般形式的三角不等式。
排序不等式也是基本而重要的不等式,一些重要不等式可以看成是排序不等式的特殊情形,例如不等式 .有些重要不等式則可以藉助排序不等式得到簡捷的證明。教科書在討論排序不等式時,展示了一個「**——猜想——證明——應用」的研究過程,目的是引導學生通過自己的數學活動,初步認識排序不等式的數學意義、證明方法和簡單應用。
柯西不等式、三角不等式和排序不等式也是數學課程標準正式引入到高中數學教學中。
第四講是「數學歸納法證明不等式」.本講介紹了數學歸納法及其在證明不等式中的應用.對於某些不等式,必須藉助於數學歸納法證明,所以在不等式選講的專題中安排這個內容是很有必要的。教科書首先結合具體例子,提出尋找一種用有限步驟處理無限多個物件的方法的問題.然後,類比多米諾骨牌遊戲,引入用數學歸納法證明命題的方法,並分析了數學歸納法的基本結構和用它證明命題時應注意的問題(兩個步驟缺一不可).接著舉例說明數學歸納法在證明不等式中的應用,特別地,證明了貝努利不等式。
含絕對值的不等式解法,含絕對值的不等式怎樣解
關鍵是去絕對值來。去絕對值的關鍵是分自清絕對值裡面的值是正還是負。所以一般都是分段討論。先看零點,零點是每個絕對值為零的點,本題的零點是5和 3 2.所以分為負無窮到 3 2,3 2到5,5到正無窮討論。一,當x在負無窮到 3 2時,原式為5 x 2x 3 1,解之x 7。二,當x 3 2時,無解。...
絕對值不等式的性質,高中數學絕對值不等式公式 一定要正確的啊 我明天高考 突然忘了
三角不等式,a b a b a b a b 2a 也就是說只需 x 1 x 2 2即可。解得0.5 x 2.5 1 x 2時,a x 1 x 2 a 而a與b同號的時候 a b a b 而 a b 0,a b a b a b a與b異號的時候,a b a b 而 a b 0,a b a b a b ...
不等式x 1的絕對值加x 2的絕對值小於等於2的解集為多少
x 1 x 2 2,當x 1時,不 等式化為 x 1 x 2 2,解得 x 0.5,得 0.5 x 1 1 x 2,不等式化為 x 1 x 2 2,1 2,恆成立,當x 2時,不等式化為 x 1 x 2 2,x 2.5,得 2 綜上所述 0.5 x 2.5,區間表示 0.5,2.5 不等式x 1的絕...