1樓:然然小飛
一元函式:來可導必然連源續,連續
推不出可bai導,可導與可微du等價。多元函zhi數:可偏導與連dao續之間沒有聯絡,也就是說可偏導推不出連續,連續推不出可偏導。
多元函式中可微必可偏導,可微必連續,可偏導推不出可微,但若一階偏導具有連續性則可推出可微。
這之間的關係上面已經說的很清楚,我補充一點理解上的東西。大學數學之所以叫微積分學,而沒有叫導(數)積分學,很大原因就是微積分學基本上就是一個概念:以直代曲,而微分正是為了這個而產生得數學表達,因此微分是最基本的,一元函式微分和可導是等價的概念,可以推出原來函式的連續性質,而多元函式可微分則能推出任意方向導數的存在性,也可以推出原來函式的連續性,從微分概念的產生得目的上講,推出這些是自然而然的事情。
可微、可導、連續、偏導存在、極限存在之間的關係是什麼?
2樓:angela韓雪倩
具體見圖:
設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx),其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx,當x= x0時,則記作dy∣x=x0。
如果一個函式在x0處可導,那麼它一定在x0處是連續函式。
函式可導定義:
(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。
(2)若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導。
利用極限的思想方法給出連續函式、導數、定積分、級數的斂散性、多元函式的偏導數,廣義積分的斂散性、重積分和曲線積分與曲面積分的概念。如:
(1)函式在 點連續的定義,是當自變數的增量趨於零時,函式值的增量趨於零的極限。
(2)函式在 點導數的定義,是函式值的增量 與自變數的增量 之比 ,當 時的極限。
(3)函式在 點上的定積分的定義,是當分割的細度趨於零時,積分和式的極限。
(4)數項級數的斂散性是用部分和數列 的極限來定義的。
(5)廣義積分是定積分其中 為,任意大於 的實數當 時的極限,等等。
3樓:一個人在那看書
可導允許偏導存在極限存在之間關係,就是互動性
4樓:清鵬之
這個是我個人的理解,和其他回答不太一樣,我更針對於他們定義上的區別與聯絡。
可微課本上的原話是,如果△y=f(x+x0)-f(x)可以表示為△y=b△x+o(△x)的形式,則稱可微。
5樓:王溫暖
可微、可導、連續、偏導存在、極限存在之間的關係是什麼?
連續,可導,可微,有偏導數 相互之間的關係(多元函式)
6樓:彌信程水
可微推出偏導數存在且函式連續,反之不成立。
偏導函式連續推出可微,反之不成立。
可導一定連續,但連續不一定可導。
可導與可微是等價的。
注意:要區分偏導函式與函式。(把函式求導後的函式稱為偏導函式)
多元函式的連續,可微的定義,以及連續,偏導,可微之間的關係
7樓:匿名使用者
多元函式性質之間的關係問題
多元函式這些性質之間的關係是:可微分是最強 的性質,即可微必然可以推出偏導數存在,必然可以推出連續。反之偏導數存在與連續之間是不能相互推出的(沒有直接關係),即連續多元函式偏導數可以不存在;偏導數都存在多元函式也可以不連續。
偏導數連續強於函式可微分,是可微分的充分不必要條件,相關例子可以在數學分析書籍中找到。
其中可微分的定義是:
以二元函式為例(n元類似)
擴充套件:可微分可以直觀地理解為用線性函式逼近函式時的情況(一元函式用一次函式即切線替代函式增量,二元函式可以看做是用平面來代替,更多元可以看做是超平面來的代替函式增量,當點p距離定點p0的距離p趨於零時,函式增量與線性函式增量的差是自變數與定點差的高階無窮小(函式增量差距縮小的速度快與自變數p靠近p0的速度))。
8樓:匿名使用者
1、如果二元函式f在其域中的某個點處是可分的,則二元函式f存在於該點的偏導數處,而該函式不一定成立。
2、如果二進位制函式f在其域中的某個點處是可分的,則二進位制函式f在該點處是連續的,反之亦然。
3、二元函式f是否在其域中的某個點處是連續的,與偏導數的存在無關。
4、可區分和充分條件:函式的偏導數存在並且在某一點的某個鄰域中是連續的,並且此時二元函式f是可分的。
設d為一個非空的n 元有序陣列的集合, f為某一確定的對應規則。若對於每一個有序陣列 ( x1,x2,...,xn)∈d,通過對應規則f,都有唯一確定的實數y與之對應,則稱對應規則f為定義在d上的n元函式。
記為y=f(x1,x2,...,xn) 其中 ( x1,x2,...,xn)∈d。 變數x1,x2,...,xn稱為自變數,y稱為因變數。
當n=1時,為一元函式,記為y=f(x),x∈d,當n=2時,為二元函式,記為z=f(x,y),(x,y)∈d。二元及以上的函式統稱為多元函式。
9樓:匿名使用者
多元函式連續、偏導數存在、可微之間的關係一般有:
1、若多元函式f在其定義域內某點可微,則多元函式f在該點偏導數存在,反過來則不一定成立。
2、若多元函式函式f在其定義域內的某點可微,則多元函式f在該點連續,反過來則不一定成立。
3、多元函式f在其定義域內某點是否連續與偏導數是否存在無關。
4、可微的充要條件:函式的偏導數在某點的某鄰域記憶體在且連續,則多元函式f在該點可微。祝好。
可導,可微,可積和連續的關係
10樓:demon陌
對於一元函式有,可微
<=>可導=>連續=>可積
對於多元函式,不存在可導的概念,只有偏導數存在。函式在某處可微等價於在該處沿所有方向的方向導數存在,僅僅保證偏導數存在不一定可微,因此有:可微=>偏導數存在=>連續=>可積。
可導與連續的關係:可導必連續,連續不一定可導;
可微與連續的關係:可微與可導是一樣的;
可積與連續的關係:可積不一定連續,連續必定可積;
可導與可積的關係:可導一般可積,可積推不出一定可導;
擴充套件資料:
可導,即設y=f(x)是一個單變數函式, 如果y在x=x0處左右導數分別存在且相等,則稱y在x=x[0]處可導。如果一個函式在x0處可導,那麼它一定在x0處是連續函式。
函式可導的條件:
如果一個函式的定義域為全體實數,即函式在其上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。函式在定義域中一點可導需要一定的條件:
函式在該點的左右導數存在且相等,不能證明這點導數存在。只有左右導數存在且相等,並且在該點連續,才能證明該點可導。
可導的函式一定連續;連續的函式不一定可導,不連續的函式一定不可導。
可微設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx),其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx,當x= x0時,則記作dy∣x=x0。
必要條件
若函式在某點可微分,則函式在該點必連續;
若二元函式在某點可微分,則該函式在該點對x和y的偏導數必存在。
充分條件
若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。
可積函式是存在積分的函式。除非特別指明,一般積分是指勒貝格積分;否則,稱函式為"黎曼可積"(也即黎曼積分存在),或者"henstock-kurzweil可積",等等。
黎曼積分在應用領域取得了巨大的成功,但是黎曼積分的應用範圍因為其定義的侷限而受到限制;勒貝格積分是在勒貝格測度理論的基礎上建立起來的,函式可以定義在更一般的點集上,更重要的是它提供了比黎曼積分更廣泛有效的收斂定理,因此,勒貝格積分的應用領域更加廣泛。
11樓:高尚紳士動物
關係:可導與連續
的關係:可導必連續,連續不一定可導;可微與連續的關係:可微與可導是一樣的;可積與連續的關係:
可積不一定連續,連續必定可積;可導與可積的關係:可導一般可積,可積推不出一定可導;可微=>可導=>連續=>可積
12樓:飛翔吧
對於一元函式來說,可導和可微是一樣的。可導必連續,連續不一定可導。連續一定可積,可積的函式不一定是連續的,比如有有限個可去間斷點的函式也可積。
13樓:人族大魔法師
多元函式偏導與是否連續沒有必然聯絡
14樓:西域牛仔王
對一元函式而言,函式在某點可導則必連續,但連續不一定可導。
可導與可微就一回事,可導必可微,可微必可導。
15樓:匿名使用者
偏導存在推不出連續,課本上寫著呢
16樓:15天23個小時
多元函式,偏導數存在不一定連續
17樓:匿名使用者
偏導數存在不能推出連續吧
多元函式的連續、偏導存在存在和可微之間有什麼關係
18樓:匿名使用者
二元函式連續抄、偏導數存襲在、可微之間的bai關係1、若二元函式f在其定du義域內某
點可微zhi,則二元函式f在該點偏導數存在,反過來則不一定成立。
2、若二元函式函式f在其定義域內的某點可微,則二元函式f在該點連續,反過來則不一定成立。
3、二元函式f在其定義域內某點是否連續與偏導數是否存在無關。
4、可微的充要條件:函式的偏導數在dao某點的某鄰域記憶體在且連續,則二元函式f在該點可微。
上面的4個結論在多元函式中也成立
19樓:死神vs火影
偏導數連續是可微的充分不必要條件
請問一下,多元函式可微,連續,可導,和偏導數之間關係,另外可微則連續,不可微是不是也不連續
可導一定連續,連續不一定可導 y x 函式 一階函式,可導和可微基本等價。記住上面的結論就好了。可微必連續,可微必可偏導,不可微不一定不連續 偏導數連續可推出 多元函式可微分 多元函式可微分推出 多元函式連續,偏導數存在多元函式連續推出 多元函式極限存在 其它的沒有什麼關係了 下圖一元函式和多元函式...
為什麼偏導函式連續可推出函式本,為什麼可微推不出偏導數連續可以幾何意義解釋嗎
因為可以證明 如果一個函式的偏導函式連續則該函式可微 所以偏導函式連續是函式可微的充分條件。為什麼可微推不出偏導數連續?可以幾何意 釋嗎?10 可微只能推出在該點的偏導數存在,推不出連續,但是可偏導數連續可以推出可微。因為可微的點周圍可能偏導數不存在,如下式,該函式在 0,0 處可微,偏導數都為0,...
設z f x y g x y z其中f,g可微,求z y 偏導問題,求高手解答
z f x y g x y z 兩邊對x求導 z x f x y g x y z 1 g x y z 1 z x z x f x y g x y z 1 g x y z 1 f x y g x y z 1 g x y z 兩邊對y求導 z y f x y g x y z 1 g x y z 1 z ...