線性代數矩陣乘法運算,線性代數矩陣乘法運算

2021-03-04 04:50:36 字數 5904 閱讀 1831

1樓:匿名使用者

這種乘法完全可以心算,還需要什麼技巧

2樓:匿名使用者

過程如下圖所示:

如果回答對您有所幫助請採納,謝謝!

線性代數中矩陣相乘如何計算啊

3樓:匿名使用者

左邊矩陣的行的每一個元素 與右邊矩陣的列的對應的元素一一相乘然後加到一起形成新矩陣中的aij元素 i是左邊矩陣的第i行 j是右邊矩陣的第j列

例如 左邊矩陣:

2 3 4

1 4 5

右邊矩陣

1 2

2 3

1 3

相乘得到: 2×1+3×2+4×1 2×2+3×3+4×31×1+4×2+5×1 1×2+4×3+5×3這樣2×2階的一個矩陣

我也是自學的線性代數 希望能幫到你 加油!

4樓:反叛中

參考>http://****

5樓:匿名使用者

c=a*b; a是階m*p,,b是p*n階;

c(i,j)=sigma k=1....p a(i,k)*b(k,j);

i=1~m,j=1~n 。

矩陣乘法如何計算?詳細步驟! 10

6樓:匿名使用者

|回答:

此題2行2列矩陣乘以2行3列矩陣。

所得的矩陣是:2行3列矩陣

最後結果為: |1 3 5|

|0 4 6|

拓展資料

1、確認矩陣是否可以相乘。只有第一個矩陣的列的個數等於第二個矩陣的行的個數,這樣的兩個矩陣才能相乘。

圖示的兩個矩陣可以相乘,因為第一個矩陣,矩陣a有3列,而第二個矩陣,矩陣b有3行。

2、計算結果矩陣的行列數。畫一個空白的矩陣,來代表矩陣乘法的結果。矩陣a和矩陣b相乘得到的矩陣,與矩陣a有相同的行數,與矩陣b有相同的列數。

你可以先畫出白格來代表結果矩陣中的行列數。

矩陣a有2行,所以結果矩陣也有2行。

矩陣b有2列,所以結果矩陣也有2列。

最終的結果矩陣就有2行2列。

3、計算第一個「點」。要計算矩陣中的第一個「點」,你需要用第一個矩陣第一行的第一個數乘以第二個矩陣第一列的第一個數,第一行的第二個數乘以第一列的第二個數,第一行的第三個數乘以第一列的第三個數,然後將這三個結果加到一起,得到第一個點。先來計算一下結果矩陣中第二行第二列的數,下面是演算法:

6 x -5 = -30

1 x 0 = 0

2 x 2 = -4

-30 + 0 + (-4) = -34

結果是-34,對應了矩陣最右下角的位置。

在你計算矩陣乘法時,結果所處的行列位置要滿足,行和第一個矩陣的行相同,列和第二個矩陣的列相同。比如,你用矩陣a最下面一行的數乘以矩陣b最右一列的數,得到的結果是-34,所以-34應該是結果矩陣中最右下角的一個數。

4、計算第二個「點」。比如計算最左下角的數,你需要用第一個矩陣最下面一行的數乘以第二個矩陣最左列的數,然後再把結果相加。具體計算方法和上面一樣。

6 x 4 = 24

1 x (-3) = -3

(-2) x 1 = -2

24 + (-3) + (-2) = 19

結果是-19,對應矩陣左下角的位置。

5、在計算剩下的兩個「點」。要計算左上角的數,用矩陣a的最上面一行的數乘以矩陣b左側一列的數,下面是具體演算法:

2 x 4 = 8

3 x (-3) = -9

(-1) x 1 = -1

8 + (-9) + (-1) = -2

結果是-2,對應的位置是左上角。

要計算右上角的數,用矩陣a的最上面一行的數乘以矩陣b右側一列的數,下面是具體演算法:

2 x (-5) = -10

3 x 0 = 0

(-1) x 2 = -2

-10 + 0 + (-2) = -12

結果是-12,對應的位置是右上角。

6、檢查相應的數字是否出現在正確的位置。19在左下角,-34在右下角,-2在左上角,-12在右上角。

7樓:匿名使用者

2行2列矩陣 乘以 2行3列矩陣 所得的矩陣是:2行3列矩陣

最後結果為:|1 3 5|

|0 4 6|

|a b| |e f g| |ae+bh af+bi ag+bk|

|c d| 乘以 |h i k| 等於 |ce+dh cf+di cg+dk|

不知道你能不能看出來,

前一矩陣的第一行對應元乘以後一矩陣第一列對應元之和為新矩陣的第一行第一列的元素。

例如:1*0+1*1=1

前一矩陣的第一行對應元乘以後一矩陣第二列對應元之和為新矩陣的第一行第二列的元素。

例如:1*2+1*1=3

前一矩陣的第一行對應元乘以後一矩陣第三列對應元之和為新矩陣的第一行第三列的元素。

例如:1*3+1*2=5

前一矩陣的第二行對應元乘以後一矩陣第一列對應元之和為新矩陣的第二行第一列的元素。

例如:2*0+0*1=0

前一矩陣的第二行對應元乘以後一矩陣第二列對應元之和為新矩陣的第二行第二列的元素。

例如:2*2+0*1=4

前一矩陣的第二行對應元乘以後一矩陣第三列對應元之和為新矩陣的第二行第三列的元素。

例如:2*3+0*2=6

8樓:雲遊天下

1 3 5

0 4 6

第一行依次乘以各列為第一行數值,第二行依次乘以各列為第二行數值。(例:第二行乘以第一列為第二行第一列對應的數)

矩陣乘法怎麼算?

9樓:百倫

比如乘法ab

一、1、用a的第1行各個數與b的第1列各個數對應相乘後加起來,就是乘法結果中第1行第1列的數;

2、用a的第1行各個數與b的第2列各個數對應相乘後加起來,就是乘法結果中第1行第2列的數;

3、用a的第1行各個數與b的第3列各個數對應相乘後加起來,就是乘法結果中第1行第3列的數;

依次進行,(直到)用a的第1行各個數與b的第末列各個數對應相乘後加起來,就是乘法結果中第1行第末列的的數。

二、1、用a的第2行各個數與b的第1列各個數對應相乘後加起來,就是乘法結果中第2行第1列的數;

2、用a的第2行各個數與b的第2列各個數對應相乘後加起來,就是乘法結果中第2行第2列的數;

3、用a的第2行各個數與b的第3列各個數對應相乘後加起來,就是乘法結果中第2行第3列的數;

依次進行,(直到)用a的第2行各個數與b的第末列各個數對應相乘後加起來,就是乘法結果中第2行第末列的的數。

依次進行,

(直到)用a的第末行各個數與b的第1列各個數對應相乘後加起來,就是乘法結果中第末行第1列的數;

用a的第末行各個數與b的第2列各個數對應相乘後加起來,就是乘法結果中第末行第2列的數;

用a的第末行各個數與b的第3列各個數對應相乘後加起來,就是乘法結果中第末行第3列的數;

依次進行,

(直到)用a的第末行各個數與b的第末列各個數對應相乘後加起來,就是乘法結果中第末行第末列的的數。

10樓:三城補橋

第一個矩陣的第一行 的每個數分別乘以 第二個矩陣第一列 的每個數 相加求和

是結果矩陣的 第一個數

第一個矩陣的第二行 和 第二個矩陣的第一列 求和 是結果矩陣的第一列第二個數

以此類推

兩個矩陣要做乘法,那麼第一個矩陣的行數和第二個矩陣的列數必須一樣就是m✖️n的矩陣,和n✖️s的矩陣,可以做乘法

11樓:匿名使用者

兩矩陣相乘,左矩陣第一行乘以右矩陣第一列(分別相乘,第一個數乘第一個數),乘完之後相加,即為結果的第一行第一列的數,依次往下算,推薦**:http://baike.

對照例子學得快

12樓:系昕度高韻

用a的行乘以b的列所對應的數字。

1x1+2x1+3x1=6

1x2+2x3+3x1=11

1x1+1x1+1x1=3

1x2+1x3+1x1=6

(611)(36)

13樓:匿名使用者

一般情況 是 左乘矩陣的第 i 行的數 分別乘 右乘矩陣第 j 列對應的數 再加起來 就是乘積矩陣第 i 行第 j 列的數

14樓:福爾摩罡

兩個矩陣能相乘必須要滿足第一個矩陣的列數等於第二個矩陣的行數,然後把滴一個矩陣的第i行與第二個矩陣的第j列的對應項相乘並求和就是結果矩陣的第i行第j列的那個項了。

線性代數,如圖的兩個矩陣相乘,計算結果是什麼?

15樓:雪凌夢冰樂琪兒

首先用初等行變換求解第一個矩陣的逆矩陣。原理是對[a|e]進行初等行變換,當左邊的部分化成單位矩陣e時,右邊的部分就是逆矩陣。

之後用矩陣乘法求出兩個矩陣相乘的結果即可,具體過程如下。

線性代數矩陣乘法

16樓:匿名使用者

你這個題目很有問題,第一個矩陣都寫漏了一個元素,應該是還有一個m4

第一個矩陣為3行4列,第二個矩陣為1行4列,這樣子是不能做乘法運算的。第二個矩陣應該還有一個轉置符號的。

17樓:匿名使用者

兩矩陣的乘等於bai第一個矩

du陣的第一行分別乘以第zhi二個矩陣dao的第一列,再加起專

來,記在第一行第屬一列的位子,再把第一個矩陣的第二行分別乘以第二個矩陣的第二列,再加起來,記在第一行的第二列位子上···················那麼m行n列的矩陣乘以的矩陣只能是n行,s列(m,n,s為自然數),乘出來的新矩陣就是m行s列的矩陣

這兩個矩陣相乘怎麼算?

18樓:小木頭娃哇

矩陣相乘需要前面矩陣的行數與後面矩陣的列數相同方可相乘。

第一步先將前面矩陣的每一行分別與後面矩陣的列相乘作為結果矩陣的行列。

第二步算出結果即可。

19樓:我是雪寶啊

矩陣乘積分兩種:

第一:點乘.對矩陣要求是:

兩個矩陣的行列相等,比如:a(3,3) .b(3,3) .

c=ab ,c(3,3)第二是 矩陣相乘.要求:第一個的列數等於第二個的行數,a(3,4) .

b(4,2) .c=ab ,c(3,2)

分清楚矩陣就是指數表與行列式(行列式是數)不同,矩陣相乘就是兩個數表的運算(你最好看看教材有詳細的推理過程),然後你自己總結規律(規律可以讓你更容易記憶)就知道矩陣相乘是如何運算的.

20樓:李灝崢

a(3,4)矩陣能否與b(8,3)矩陣相乘:

a的列數等於b的行數(4不等於8)

最終得出的矩陣是前行配後列(3,3)

計算時,行列元素一一對應。

21樓:匿名使用者

記住三句話就可以(其他都是廢話):(相乘的形式設為a*b)1。a的行對應b的列,對應元素分別相乘

2。相乘的結果行還是a的行、列還是b的列

3。a的列數必須等於b的行數

22樓:匿名使用者

比如【1,1;2,2】*【2,2;3,3】

等於左邊第一行的每個數和右邊的第一列的每個數相乘,然後是第二行和一二列

然後就會得到所求的矩陣了

大學數學線性代數矩陣行列式,線性代數,這個矩陣的行列式咋求啊

設特徵值為 那麼 a e 1 2 0 1 0 1 1 0得到 0,1,1 於是a 0e 0 1 2 0 0 1 0 1 0 r1 2r2,r1 r3,r2 1,r3 1,交換行次序 0 1 0 0 0 1 0 0 0 得到特 內徵向量 0,0,1 容t a e 1 1 2 0 1 1 0 1 1 r...

線性代數矩陣的冪計算方法有哪些,線性代數矩陣的冪計算方法

一般有以下幾種方法 1.計算a 2,a 3 找規律,然後用歸納法證明2.若r a 1,則a t,a n t n 1 a 注 t t tr t 3.分拆法 a b c,bc cb,用二項式公式適用於 b n 易計算,c的低次冪為零矩陣 c 2 或 c 3 0.4.用對角化 a p 1diagp a n...

求矩陣x,線性代數,線性代數求矩陣X

使用初等行變換 ax b a b e x a變成e,b自然就變成x,而a非常容易使用行變換變成單位矩陣 線性代數求矩陣x 詳細過程,如圖所示。先將方程轉化,看看需要計算那些東西。轉化後發現,需要計算a的行列式 a 2e a的逆矩陣。線性代數 有以下矩陣a b 已知xa b 求矩陣x 設a的逆矩陣為b...