大學數學線性代數矩陣行列式,線性代數,這個矩陣的行列式咋求啊

2021-03-10 21:31:07 字數 3306 閱讀 6405

1樓:匿名使用者

設特徵值為

λ那麼|a-λe|=

-λ 1 2

0 -λ -1

0 -1 -λ= -λ *(λ²-1)=0得到λ=0,-1,1

於是a-0e=

0 1 2

0 0 -1

0 -1 0 r1+2r2,r1+r3,r2*-1,r3*-1,交換行次序

~0 1 0

0 0 1

0 0 0 得到特

內徵向量(0,0,1)^容t

a+e=

1 1 2

0 1 -1

0 -1 1 r1-r2,r3+r2

~1 0 3

0 1 -1

0 0 0 得到特徵向量(-3,1,1)^ta-e=

-1 1 2

0 -1 -1

0 -1 -1 r1+r2,r3-r2,r1*-1,r2*-1~1 0 -1

0 1 1

0 0 0 得到特徵向量(1,-1,1)^t於是矩陣p為

0 -3 1

0 1 -1

1 1 1

而p^-1=

1 2 1

-1/2 -1/2 0

-1/2 -3/2 0

代入進行計算即可

2樓:男人不穿皮褲

直接按第1列(按列定理)

還有一種方法:

把第1列最上面的x,寫成x+0

把第1列最下面的y,寫成0+y

再利用行列式性質,拆成兩個行列式之和

線性代數,這個矩陣的行列式咋求啊?

3樓:匿名使用者

每一行都加到第一行

那麼第一行就是每個元素為

1+2+3+…+n+a=n(n+1)/2 +a將其提取出來,即每個元素都是1

然後第一行減去第一行*行數

得到對角線行列式,第2行起都是a

於是行列式值=[n(n+1)/2 +a] *a^(n-1)

線性代數行列式的計算有什麼技巧嗎?

4樓:孤傲一世言

線性代數行列式有如下計算技巧:

1、行列式a中某行(或列)用同一數k乘,其結果等於ka。

2、行列式a等於其轉置行列式at(at的第i行為a的第i列)。

3、若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。

4、行列式a中兩行(或列)互換,其結果等於-a。 ⑤把行列式a的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是a。

擴充套件資料

線性代數重要定理:

1、每一個線性空間都有一個基。

2、對一個 n 行 n 列的非零矩陣 a,如果存在一個矩陣 b 使 ab = ba =e,則 a 為非奇異矩陣(或稱可逆矩陣),b為a的逆陣。

3、矩陣非奇異(可逆)當且僅當它的行列式不為零。

4、矩陣非奇異當且僅當它代表的線性變換是個自同構。

5、矩陣半正定當且僅當它的每個特徵值大於或等於零。

6、矩陣正定當且僅當它的每個特徵值都大於零。

7、解線性方程組的克拉默法則。

8、判斷線性方程組有無非零實根的增廣矩陣和係數矩陣的關係。

注:線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。

由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

5樓:匿名使用者

首先以第

一行第一列的資料為基礎,通過初等行變換將第一列中a11下面的資料變為0;再以第二行第二列的資料為基礎,通過初等行變換將第二列中a22下面的資料變為0;以此類推,直至將行列式變為正三角行列式的形式,將對角線上的資料相乘計算即可。(可根據自己的計算習慣進行改進) 一般思路就是將行列式轉化為三角行列式的形式進行計算。

6樓:獅子女孩的心思

1.利用行列式定義直接計算

例1  計算行列式

解    dn中不為零的項用一般形式表示為

2.利用行列式的性質計算

則稱dn為反對稱行列式,證明:奇數階反對稱行列式為零.

故行列式dn可表示為

當n為奇數時,得dn =-dn,因而得dn = 0.。

3.化為三角形行列式

若能把一個行列式經過適當變換化為三角形,其結果為行列式主對角線上元素的乘積。因此化三角形是行列式計算中的一個重要方法。

4.降階法

降階法是按某一行(或一列)行列式,這樣可以降低一階,更一般地是用拉普拉斯定理,這樣可以降低多階,為了使運算更加簡便,往往是先利用列式的性質化簡,使行列式中有較多的零出現,然後再。

5.遞推公式法

遞推公式法:對n階行列式dn找出dn與dn-1或dn與dn-1, dn-2之間的一種關係——稱為遞推公式(其中dn, dn-1, dn-2等結構相同),再由遞推公式求出dn的方法稱為遞推公式法。

6.利用範德蒙行列式

7.加邊法(升階法)

加邊法(又稱升階法)是在原行列式中增加一行一列,且保持原行列式不變的方法。

8.數學歸納法

9.拆開法

把某一行(或列)的元素寫成兩數和的形式,再利用行列式的性質將原行列式寫成兩行列式之和,使問題簡化以利計算。

7樓:匿名使用者

線性代數:行列式的計算與應用

8樓:匿名使用者

瞭解。技巧是靠經驗積累出來的,特別是線性代數,當時老師就跟我們說:這門課是「做會的」,不是「看會的」。一定要多做題才能知道怎樣進行行列變換才是最佳的。

你剛開始學常做錯不用著急,正常的。要問有什麼技巧的話,有是有,但都很零散,都是題目做多了自己總結出來的。光靠聽別人說是學不會的。

總之多練習就對了,一上手做肯定都是錯的,不用太擔心。

9樓:高數小蝦米

這些倒是不算什麼

考試的時候 可能會出 爪型行列式 範德萌行列式 記住特殊的解法就可以

10樓:狙擊盜號

首先你要把行列式的某行(列)的數化簡到只有一個是非零的,然後按行列式的餘階子式將n*n的行列式化簡成(n-1)*(n-1)的行列式化到3*3就可以算了

11樓:匿名使用者

有啊 就是那幾個結論啊 可能你還在學前面的 那建議你先預習 後面有結論的 總結有規律的

線性代數行列式證明證明,線性代數行列式證明 證明 1 a1 1 1 1 1 1 a2 1 1 1 1 1 a

1 從第二行開始,各行都減去第一行 1 a1 1 1 1 a1 a2 0 0 a1 0 a3 0 a1 0 0 an 2 第二行除以a2,第三行除以a3.第n行除以an,因此外圍提出一個 a2a3.an 1 a1 1 1 1 a1 a2 1 0 0 a1 a3 0 1 0 a1 an 0 0 1 a...

線性代數關於矩陣行列式性質的問題

1.首先明確一點 a b 不等於 a b 假設b a,且 a 0,b 0,但是 a b 0,總之 a b 和 a b 沒什麼關係,不要用他們互相推斷。可以是方陣,但是a,b不一定是方陣,不一定有行列式。b不一定有是方陣,方陣才可逆。4.這是對的,方陣乘以方陣還是方陣,所以ab是方陣,ab 存在。且滿...

這道線性代數行列式的題怎麼寫,這道線性代數行列式的題目怎麼寫 求解答過程

最簡單的方法就是將行列式的第一列加到第三列,則第二列和第三列元素都相等,都是77 8故行列式等於零,當然是11的倍數。首先是將第 1 行的 1 倍加到第 2,3,4 行,則第 2,3,4 行都不含 x,則第 1 行元素的代數餘子式 a11,a12,a13,a14 都是常數。按第 1 行 d a11 ...