高數微分方程dyxtany,高數微分方程dydxyxtanyx通解是什麼讓我看懂者,還有更多的重賞

2021-03-04 05:14:09 字數 2431 閱讀 8646

1樓:匿名使用者

這是個齊次方程 令u=y/x ==>dy/dx=u+xdu/dx

原式化為 xdu/dx=tanu==>c+lnx=lnsinu==>cx=sinu=sin(y/x)

和你算得一樣,是不是答案錯了

2樓:劉以鬆

y=xarcsin(x/c)

求微分方程dy/dx=1/(x+y)的通解

3樓:您輸入了違法字

^^dy/dx=1/(x+y)

dx/dy=x+y

x'-x=y

x=e^-∫du-dy·zhi[∫e^(∫-dy)·ydy+c]=e^y·[∫(e^-y)·ydy+c]

=e^y·[-∫yd(e^-y)+c]

=e^y·[-y·e^-y+∫e^-ydy+c]=e^y·[(-y-1)e^-y+c]

=ce^y-y-1

擴充套件資料dao

:

當人們用微積分學去研究幾何學、力學、物理學所提出的問題時,微分方程就大量地湧現出來。牛頓本人已經解決了二體問題:

在太陽引力作用下,一個單一的行星的運動。他把兩個物體都理想化為質點,得到3個未知函式的3個二階方程組,經簡單計算證明,可化為平面問題,即兩個未知函式的兩個二階微分方程組。用叫做「首次積分」的辦法,完全解決了它的求解問題。

4樓:晴天擺渡

|令x+y=u,du

則y=u-x

dy/dx=du/dx -1

代入原zhi

方程dao得內

du/dx -1=1/u

即du/dx=(u+1)/u

udu/(u+1)=dx

[1-1/(u+1)]du=dx

u-ln|容u+1|=x+c

x+y-ln|x+y+1|=x+c

y-ln|x+y+1|=c

5樓:都市新

這道高等數學題,一般人都解答不了,你可以去問一下數學老師。

6樓:匿名使用者

^整理得baiydy/(1-y2)=xdx積分du,∫ydy/(1-y2)=∫xdx-1/2*ln|zhi1-y2|=x2/2+cln|1-y2|=-x2+c

1-y2=ce^(-x2)

y2=1-ce^(-x2)為通dao解

7樓:匿名使用者

^令baiu=x-3,v=y+2,那麼x=u+3,y=v-2,dy/dx=d(v-2)/d(u+3)=dv/du

dv/du=2(((v-2)+2)/((u+3)+(v-2)-1))^du2=2(v/(u+v))^2

du/dv=(1/2)*(u/v + 1)^2

令z=u/v,u=zv,u'=z+z'v

z+z'v=(1/2)*(z+1)^2

1/(z^2+z+1)dz=(1/2v)dv

(2/√

zhi3)/ d[(2z/√3)+(1/√3)]=(1/2v)dv

(2/√3)arctan[(2z/√3)+(1/√3)]=(ln|daov|)/2+c

(2/√3)arctan[(2u/v√3)+(1/√3)]=(ln|v|)/2+c

(2/√3)arctan[(2(x-3)/√3(y+2))+(1/√3)]=(ln|y+2|)/2+c

8樓:善言而不辯

^dy/dx=1/(x+y)

dx/dy=x+y

x'-x=y

x=e^-∫-dy·

[∫e^(∫-dy)·ydy+c]

=e^y·[∫(e^-y)·ydy+c]

=e^y·[-∫yd(e^-y)+c]

=e^y·[-y·e^-y+∫e^-ydy+c]=e^y·[(-y-1)e^-y+c]

=ce^y-y-1

9樓:匿名使用者

^dy/dx=(x+y)/(x-y)

x+y=u,x-y=t

y=(u-t)/2

x=(u+t)/2

dy/dx=(du+dt)/(du-dt)=u/tudu-udt=tdu+tdt

udu-tdt=udt+tdu

d(u^容2-t^2)=2dut

u^2-t^2=2ut+c

(x+y)^2-(x-y)^2=2(x+y)(x-y)+c2x*2y=2(x^2-y^2)+c

2xy=(x^2-y^2)+c

求解微分方程xy'=y+xtan(y/x)

10樓:匿名使用者

令u=y/x,有y′=dy/dx=u+xdu/dxu+xdu/dx=u+tanu

cotudu=dx/x

ln|sinu|=ln|x|+c

sinu=cx,y=xarcsin(cx)

這個微分方程如何求解,如圖,高數求解微分方程,如圖。求解釋

助人為樂記得采納哦,不懂的話可以繼續問我 高數求解微分方程,如圖。求解釋 如圖,不難,但是不容易求對 可利用微分運算元法求特解 如圖微分方程組怎麼解?求詳細過程。方程組等價於 y 3x 2y 0 x x 4y 3 0 對2式求導,x x 4y 3 0 將y 3x 2y代入上式,有x x 4x 8y ...

高數中的微分方程題,求大神解答,高數中的微分方程題,求大神解答

特徵根 i,故設特解 y ax b cos2x cx d sin2x y acos2x 2 ax b sin2x csin2x 2 cx d cos2x 2cx 2d a cos2x 2ax 2b c sin2x y 2ccos2x 2 2cx 2d a sin2x 2asin2x 2 2ax 2b...

高數 常微分方程 高階微分方程,有三道題,求大神幫忙解答

第一題的問題 f 1 2隱含著的條件是,f 1 2 所以,f x c1x 2 c2,f x 2c1x c1 c2 1 第二題。你已經得出了y y 2y f x 將y xe x帶入即可 f x d dx 2 d dx 1 xe x e x d dx 1 d dx 2 x 1 2x e x 第三題。直到...