1樓:神的味噌汁世界
^第一題的問題:f(1)=2隱含著的條件是,f'(1)=2
所以,f(x)=c1x^2+c2,f『(x)=2c1x
c1=c2=1
第二題。你已經得出了y''-y'-2y=f(x),將y=xe^x帶入即可
f(x)=(d/dx-2)(d/dx+1)xe^x=e^x(d/dx-1)(d/dx+2)x=(1-2x)e^x
第三題。直到y''+y=-sinx都是正確的,我就不按你的做法繼續了
先解方程:y''+y=-e^(ix)
y=c1sinx+c2cosx+i/2xe^(ix)
則原方程解為y的虛部
y=c1sinx+c2cosx+1/2xcosx
f(0)=0
f'(0)=1
y(0)=c2=0
y'(0)=c1+1/2=1,c1=1/2
y=1/2sinx+1/2xcosx
常係數線性微分方程的求解有一些計算技巧,但是詳講起來篇幅較長
常數的問題,你看原式
f(x)=sinx+∫(0,x) tf(t)dt -x∫(0,x) f(t)dt
取x=0
f(0)=sin0+∫(0,0) tf(t)dt -0∫(0,0) f(t)dt=0
就是這樣推常數
**求助大神解答關於可降階的高階微分方程的題(高數)
2樓:雷帝鄉鄉
先確定可降階的型別,再選擇方法。
第一題,這個屬於可降階中最基礎的型別,可通過多次積分就可以了,注意新增常數。
第二題,這一題屬於y"=f(x, y')型別,它的方式令p=y',y"=dp/dx。
第三個題目屬於y"=f(y, y'),這種型別固定的方式是令p=y',y"=pdp/dy。
常微分方程的問題,常微分方程的問題
利用dsolve 函式,可求得常微分方程的初值問題 1 x 2 y 2xy 的解析解。實現 syms y x d2y diff y,2 dy diff y,1 disp 常微分方程的解析解 y dsolve 1 x 2 d2y 2 x dy,y 0 1,dy 0 3 常微分方程,學過中學數學的人對於...
高數微分方程dyxtany,高數微分方程dydxyxtanyx通解是什麼讓我看懂者,還有更多的重賞
這是個齊次方程 令u y x dy dx u xdu dx 原式化為 xdu dx tanu c lnx lnsinu cx sinu sin y x 和你算得一樣,是不是答案錯了 y xarcsin x c 求微分方程dy dx 1 x y 的通解 dy dx 1 x y dx dy x y x ...
求高階微分方程,求高階微分方程
設 y dy dx p y 則 y dp y dx dp y dy dy dx p y dp y dy 微分方程 bai yy y du2 yy 化為 ypdp dy p 2 yp p ydp dy y p 0 1 ydp dy y p 0,即 dp dy p y 1 p e zhidy y 1e ...