1樓:至尊道無
非齊次通解=齊次通解+非齊次特解,齊次解=非齊次解-非齊次解
微分方程的通解怎麼求
2樓:匿名使用者
微分方程的解通常是一個函式表示式y=f(x),(含一個或多個待定常數,由初始條件確定)。
例如:其解為:
其中c是待定常數;
如果知道
則可推出c=1,而可知 y=-\cos x+1。
一階線性常微分方程
對於一階線性常微分方程,常用的方法是常數變易法:
對於方程:y'+p(x)y+q(x)=0,可知其通解:
然後將這個通解代回到原式中,即可求出c(x)的值。
二階常係數齊次常微分方程
對於二階常係數齊次常微分方程,常用方法是求出其特徵方程的解
對於方程:
可知其通解:
其特徵方程:
根據其特徵方程,判斷根的分佈情況,然後得到方程的通解
一般的通解形式為:若則有
若則有在共軛複數根的情況下:
r=α±βi
擴充套件資料
一階微分方程的普遍形式
一般形式:f(x,y,y')=0
標準形式:y'=f(x,y)
主要的一階微分方程的具體形式
約束條件
微分方程的約束條件是指其解需符合的條件,依常微分方程及偏微分方程的不同,有不同的約束條件。
常微分方程常見的約束條件是函式在特定點的值,若是高階的微分方程,會加上其各階導數的值,有這類約束條件的常微分方程稱為初值問題。
若是二階的常微分方程,也可能會指定函式在二個特定點的值,此時的問題即為邊界值問題。若邊界條件指定二點數值,稱為狄利克雷邊界條件(第一類邊值條件),此外也有指定二個特定點上導數的邊界條件,稱為諾伊曼邊界條件(第二類邊值條件)等。
偏微分方程常見的問題以邊界值問題為主,不過邊界條件則是指定一特定超曲面的值或導數需符定特定條件。
唯一性存在性是指給定一微分方程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。
針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理 [4] 則可以判別解的存在性及唯一性。
針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。
3樓:兔斯基
非齊次的特解帶入非齊次方程中,如下詳解望採納
4樓:惜君者
^先求對應的齊次方程dy/dx=2y/(x+1)的通解dy/y=2dx/(x+1)
ln|y|=2ln|x+1|+ln|c|
y=c (x+1)2
由常數變易法,令y=c(x)(x+1)2
則dy/dx=c'(x)(x+1)2+2c(x)(x+1)代入原方程得
c'(x)(x+1)2=(x+1)^(5/2)c'(x)=(x+1)^(1/2)
c(x)=2/3 (x+1)^(3/2)+c故原方程的通解為y=2/3 (x+1)^(7/2) +c(x+1)2
求微分方程的通解,微分方程的通解怎麼求
微分方程的解通常是一個函式表示式y f x 含一個或多個待定常數,由初始條件確定 例如 其解為 其中c是待定常數 如果知道 則可推出c 1,而可知 y cos x 1。一階線性常微分方程 對於一階線性常微分方程,常用的方法是常數變易法 對於方程 y p x y q x 0,可知其通解 然後將這個通解...
微分方程的通解是不是全部解,微分方程的通解是否包含了微分方程的所有解了
上面說的通積分其實就是你問題裡面的通解。如同上面說的一樣,常數解有時候是包含在通解中的,但是有時候也不包含在通解中,如果不包含在通解中的話,就必須把常數解寫出來。所以微分方程的通解不是全部的解。微分方程的通解是否包含了微分方程的所有解了 又找了一下。好像不屬於通解的特殊解 叫做奇解。我也在想這個問題...
求全微分方程的通解,這個全微分方程的通解怎麼求?
看著有點別copy扭,就是把 0,0 到 x,y 的折線分成兩條,第一條,從 0,y 到 x,y 就得到第一個定積分,第二條,從 0,0 到 0,y 就得到第二個定積分,這條線上,x 0,代入後dy前面的函式就變成y 了 特徵方程 t 3t 2 0 的解 t1 1,t2 2 齊次微分方程通解是 y ...