已知集合Axax22x10,xR,a為實數

2021-03-05 08:34:32 字數 1191 閱讀 1572

1樓:匿名使用者

答案依次為:a>1、0或1、0或a≥1

(1)若a=φ,則只需ax2+2x+1=0無實數解,顯然a≠0,所以只需△=4-4a<0,即a>1即可.

(2)當a=0時,原方程化為2x+1=0解得x=-1/2;當a≠0時,只需△=4-4a=0,即a=1,故所求a的值為0或1;

(3)綜合(1)(2)可知,a中至多有一個元素時,a的值為0或a≥1。

這些都是二次函式的相關知識:

二次函式(quadratic function)的基本表示形式為y=ax²+bx+c(a≠0)。二次函式最高次必須為二次, 二次函式的影象是一條對稱軸與y軸平行或重合於y軸的拋物線。

二次函式表示式為y=ax²+bx+c(且a≠0),它的定義是一個二次多項式(或單項式)。

2樓:drar_迪麗熱巴

^(1)a是空集,所以

方程無解

即 b^2-4ac=4-4a1

(2)a是單元素集,所以方程有單根

即 b^2-4ac=4-4a=0

所以a=1

(3)若a中至多隻有一個元素,所以方程無解或有單根所以a>=1

集合特性

確定性給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。

互異性一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫。

無序性一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關係,定義了序關係後。

3樓:匿名使用者

a x^2-3x+2=01.若a=空集,同上,判別式= 9-8a a>9/82.若a是單元素集,有兩種情況:

(1)判別式= 9-8a =0 => a=9/8(2)a=0,-3x+2=0 只有一個根 => a=03.若a不單元素集,a x^2-3x+2=0 有兩個實數根,a≠0 且判別式= 9-8a >0 => a

4樓:舒金燕

解(1)若a=φ,則只需ax2+2x+1=0無實數解,顯然a≠0,所以只需△=4﹣4a<0,即a>1即可.

(2)當a=0時,原方程化為2x+1=0解得x=﹣1/2;當a≠0時,只需△=4﹣4a=0,即a=1,故所求a的值為0或1;

(3)綜合(1)(2)可知,a中至多有一個元素時,a的值為0或a≥1.

已知集合AxRax22x10,aR只有

當a 0時,a 當a 0時,若集合a只有一個元素,由一元二次方程判別式 4 4a 0得a 1.綜上,當a 0或a 1時,集合a只有一個元素.故答案為 0或1.已知集合a x ax2 2x 1 0,x r a為實數.1 若a是空集,求a的取值範圍 答案依次為 a 1 0或1 0或a 1 1 若a 則只...

已知關於X的方程 K 2 X2 2K 3 X 1 0,其中K味常數,若方程有根,求k的取值範圍

k 2 x2 2k 3 x 1 0,當k 2 0,即k 2時,原方程為 7x 1 0,解得x 1 7有解當k 2 0時,方程為二次方程,有實數解得條件為 2k 3 4 k 2 0 4k 16k 1 0 解得 k 4 15 2或k 4 15 2且k 2綜上,方程有根,求k的取值範圍是 k 4 15 2...

已知關於x的方程x 2 2 k 3 X K 2 4K 1 0若這個方程有實數根,求K的取值範圍,若這個方程有根為1,求K的值

若這個方程有實數根,則,2 k 3 x的平方 4 1 k 2 4k 1 的值大於等於0 解出該不等式即可。解得k小於或等於5 若這個方程有一個根為1。將x的值代如原方程,就會得到一個關於k的一元二次方程,解出k的值就很簡單了。解得k 3 根3或k 3 根 若以方程x 2 2 k 3 x k 2 4k...