1樓:ˉever·專屬丵
當a=0時,a=;
當a≠0時,若集合a只有一個元素,由一元二次方程判別式△=4-4a=0得a=1.
綜上,當a=0或a=1時,集合a只有一個元素.故答案為:0或1.
已知集合a={x|ax2+2x+1=0,x∈r},a為實數. (1)若a是空集,求a的取值範圍;
2樓:匿名使用者
答案依次為:a>1、0或1、0或a≥1
(1)若a=φ,則只需ax2+2x+1=0無實數解,顯然a≠0,所以只需△=4-4a<0,即a>1即可.
(2)當a=0時,原方程化為2x+1=0解得x=-1/2;當a≠0時,只需△=4-4a=0,即a=1,故所求a的值為0或1;
(3)綜合(1)(2)可知,a中至多有一個元素時,a的值為0或a≥1。
這些都是二次函式的相關知識:
二次函式(quadratic function)的基本表示形式為y=ax2+bx+c(a≠0)。二次函式最高次必須為二次, 二次函式的影象是一條對稱軸與y軸平行或重合於y軸的拋物線。
二次函式表示式為y=ax2+bx+c(且a≠0),它的定義是一個二次多項式(或單項式)。
3樓:drar_迪麗熱巴
^(1)a是空集,所以
方程無解
即 b^2-4ac=4-4a1
(2)a是單元素集,所以方程有單根
即 b^2-4ac=4-4a=0
所以a=1
(3)若a中至多隻有一個元素,所以方程無解或有單根所以a>=1
集合特性
確定性給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
互異性一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫。
無序性一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關係,定義了序關係後。
4樓:匿名使用者
a x^2-3x+2=01.若a=空集,同上,判別式= 9-8a a>9/82.若a是單元素集,有兩種情況:
(1)判別式= 9-8a =0 => a=9/8(2)a=0,-3x+2=0 只有一個根 => a=03.若a不單元素集,a x^2-3x+2=0 有兩個實數根,a≠0 且判別式= 9-8a >0 => a
5樓:舒金燕
解(1)若a=φ,則只需ax2+2x+1=0無實數解,顯然a≠0,所以只需△=4-4a<0,即a>1即可.
(2)當a=0時,原方程化為2x+1=0解得x=-1/2;當a≠0時,只需△=4-4a=0,即a=1,故所求a的值為0或1;
(3)綜合(1)(2)可知,a中至多有一個元素時,a的值為0或a≥1.
已知集合Axax22x10,xR,a為實數
答案依次為 a 1 0或1 0或a 1 1 若a 則只需ax2 2x 1 0無實數解,顯然a 0,所以只需 4 4a 0,即a 1即可.2 當a 0時,原方程化為2x 1 0解得x 1 2 當a 0時,只需 4 4a 0,即a 1,故所求a的值為0或1 3 綜合 1 2 可知,a中至多有一個元素時,...
已知集合Axx22axa210,Bxx
a 2 a時a 1 2 由1 得2 a?2 1?2 即命題q 2 a 4 4分 由題意知dao命題p,q有且只有一個是真命題,1 已知集合a x ax2 2x 1 0,x r a為實數.1 若a是空集,求a的取值範圍 答案依次為 a 1 0或1 0或a 1 1 若a 則只需ax2 2x 1 0無實數...
已知關於X的方程 K 2 X2 2K 3 X 1 0,其中K味常數,若方程有根,求k的取值範圍
k 2 x2 2k 3 x 1 0,當k 2 0,即k 2時,原方程為 7x 1 0,解得x 1 7有解當k 2 0時,方程為二次方程,有實數解得條件為 2k 3 4 k 2 0 4k 16k 1 0 解得 k 4 15 2或k 4 15 2且k 2綜上,方程有根,求k的取值範圍是 k 4 15 2...