根號2為什麼不是有理數

2021-03-11 06:50:09 字數 2790 閱讀 6561

1樓:

有理數指

抄整數可以看作分襲母為1的分數。正整數bai、0、負整du數、正分數、負zhi分數都可以寫成分數的dao形式,這樣的數稱為有理數(rational number)。有理數的小數部分是有限或迴圈小數。

不是有理數的實數遂稱為無理數。

根號2等於1.4142135623731……,小數部分是無限不迴圈小數,所以它不是有理數。

2樓:火龍果

有理數(rational number):

無限不迴圈小數和開根開不盡的數叫無理數

包括整數和通常所說的分數,此分數亦可表示為有限小數或無限迴圈小數。

這一定義在數的十進位制和其他進位制(如二進位制)下都適用。

數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογος ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。

所有有理數的集合表示為 q,有理數的小數部分有限或為迴圈。

有理數分為整數和分數

整數又分為正整數、負整數和0

分數又分為正分數、負分數

正整數和0又被稱為自然數

如3,-98.11,5.72727272……,7/22都是有理數。

有理數還可以劃分為正有理數、負有理數和0。

全體有理數構成一個集合,即有理數集,用粗體字母q表示,較現代的一些數學書則用空心字母q表示。

有理數集是實數集的子集。相關的內容見數系的擴張。

有理數集是一個域,即在其中可進行四則運算(0作除數除外),而且對於這些運算,以下的運算律成立(a、b、c等都表示任意的有理數):

①加法的交換律 a+b=b+a;

②加法的結合律 a+(b+c)=(a+b)+c;

③存在數0,使 0+a=a+0=a;

④對任意有理數a,存在一個加法逆元,記作-a,使a+(-a)=(-a)+a=0;

⑤乘法的交換律 ab=ba;

⑥乘法的結合律 a(bc)=(ab)c;

⑦分配律 a(b+c)=ab+ac;

⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a1=a;

⑨對於不為0的有理數a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。

⑩0a=0

此外,有理數是一個序域,即在其上存在一個次序關係≤。

有理數還是一個阿基米德域,即對有理數a和b,a≥0,b>0,必可找到一個自然數n,使nb>a。由此不難推知,不存在最大的有理數。

值得一提的是有理數的名稱。「有理數」這一名稱不免叫人費解,有理數並不比別的數更「有道理」。事實上,這似乎是一個翻譯上的失誤。

有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是「理性的」。中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了「有理數」。但是,這個詞**於古希臘,其英文詞根為ratio,就是比率的意思(這裡的詞根是英語中的,希臘語意義與之相同)。

所以這個詞的意義也很顯豁,就是整數的「比」。與之相對,「無理數」就是不能精確表示為兩個整數之比的數,而並非沒有道理。

有理數加減混合運算

1.理數加減統一成加法的意義:

對於加減混合運算中的減法,我們可以根據有理數減法法則將減法轉化為加法,這樣就可將混合運算統一為加法運算,統一後的式子是幾個正數或負數的和的形式,我們把這樣的式子叫做代數和。

2.有理數加減混合運算的方法和步驟:

(1)運用減法法則將有理數混合運算中的減法轉化為加法。

(2)運用加法法則,加法交換律,加法結合律簡便運算。

有理數範圍內已有的絕對值,相反數等概念,在實數範圍內有同樣的意義。

一般情況下,有理數是這樣分類的:

整數、分數;正數、負數和零;負有理數,非負有理數

3樓:我不是他舅

用反證法證bai明

假設根號2是有理數du

顯然根號2大於0

則正zhi有理數可以寫dao成兩回個互質的正整數相除的形答式設根號2=p/q,p和q都是正整數且互質

兩邊平方

2=p^2/q^2

p^2=2q^2

則p^2是偶數,則p是偶數

所以p=2n,n是正整數

則4n^2=2q^2

q^2=2n^2

所以q^2是偶數,則q是偶數

所以p和q都是偶數,這和p和q互質矛盾

所以假設錯誤

所以根號2不是有理數

4樓:奚昊陰欣躍

首先指出,有理

bai數du必能表示成分數形式,zhi分子分母dao均為整數(當然可通過上回下約去公答約數使得分子分母互質)。

使用反證法可以證明

若根2為有理數,可設根2=p/q滿足p,q為非0整數且互質.

推出2*q^2=p^2

推出p^2是偶數

推出2*q^2被四整除

推出q^2是偶數

推出q,p是偶數

推出p,q不互質,矛盾

所以根2不是有理數

5樓:匿名使用者

因為它化成小數是無限不迴圈小數,而無限不迴圈小數就是無理數,所以根號2是無理數!

6樓:漩の渦の鳴の人

因為根號二是無限迴圈小數 有理數 是有限小數或整數

7樓:紫靈飄

根號2是無限不迴圈小數

所以是無理數

而有理數指整數與分數

8樓:流逝的風聲

因為它是無限不迴圈的數

是正數,為什麼不是有理數, 是不是有理數 為什麼

因為 是無 限不迴圈小數。所以 不是有理數,是無理數。無理數,也稱為無限不迴圈小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。無理數的另一特徵是無限的連分數表示式。無理數最早由畢達哥拉斯學派 希伯索斯發現。根據無理數的定義 這個數是無限不迴圈小數。應該歸屬於無...

是不是除了其他數都是有理數,「 」是不是有理數?

不是,不是有理數的原因是它是無限不迴圈小數,這個只是比較明顯的例子。除了 還有別的無限不迴圈小數。不可以換成分數 而且有理數泛指有限小數和無限迴圈小數。可以化成分數的 望採納 不是的,實際當中的無理數是很多的 我們把實數分為有理數和無理數,有理數又分為整數和分數 分數就是有限小數或者無限迴圈小數 無...

0是不是有理數,0是不是有理數數

是有理數。無限不迴圈小數和開根開不盡的數叫無理數 比如 而有理數恰恰與它相反,整數和分數統稱為有理數包括整數和通常所說的分數,此分數亦可表示為有限小數或無限迴圈小數。有理數分為整數和分數。整數又分為正整數 負整數和0 分數又分為正分數 負分數。0是不是有理數數 0到底算不算有理數?正整數,0,負整數...