1樓:匿名使用者
||是|(b-a)/2**是什麼你看好了.
假設limxn=a,那麼存在n1,當n>n1時|xn-a|n2時|xn-b|n時,上面兩個回不等式都成立答
於是|b-a|=|(xn-a)-(xn-b)|≤|xn-a|+|xn-b|<2e
即對任意e>0,當n>n時,(b-a)/2 2樓:匿名使用者 利用絕對值不等式造矛盾 b-a=|a-b|≤|x-a|+|x-b| (*) 假如取ε=(b-a)/2 因為n>n1時|xn-a|n2時|xn-b|n=max(n1,n2)時 有 |xn-a| 用反證法證明極限的唯一性時,為什麼取ε=(b-a)/2 3樓:angela韓雪倩 具體原因如下: 證明如下: 假設存在a,b兩個數都是函式f(x)當x→x。的極限,且a據極限的柯西定義,有如下結論: 任意給定ε>0(要注意,這個ε是對a,b都成立)。 總存在一個δ1>0,當0《丨x-x。丨<δ1時,使得丨f(x)-a丨<ε成立。 總存在一個δ2>0,當0《丨x-x。丨<δ2時,使得丨f(x)-b丨<ε成立。 上面的不等式可以等價變換為a-ε令δ=min,當0《丨x-x。丨<δ時。①,②兩個不等式同時成立。 因為①,②兩個不等式同時成立,所以①式右端必定大於或等於②式左端。 即:b-ε≤a+ε,移項得:(b-a)/2≤ε,因為(b-a)/2是一個確定大小的正數,所以這個結論與極限的定義: ε可以任意小矛盾,所以假設不成立,因此不存在a,b兩個數都是f(x)的極限,除非a=b矛盾才不會出現。 倘若是x趨於無窮大時的唯一性證明可以參看高數書數列極限唯一性證明,證法完全一樣。 證畢。擴充套件資料: 反證法的邏輯原理是逆否命題和原命題的真假性相同。 實際的操作過程還用到了另一個原理,即: 原命題和原命題的否定是對立的存在:原命題為真,則原命題的否定為假;原命題為假,則原命題的否定為真。 若原命題: 為真先對原命題的結論進行否定,即寫出原命題的否定:p且¬q。 從結論的反面出發,推出矛盾,即命題:p且¬q 為假(即存在矛盾)。 從而該命題的否定為真。 再利用原命題和逆否命題的真假性一致,即原命題:p⇒q為真。 誤區:否命題與命題的否定是兩個不同的概念。 命題的否定只針對原命題的結論進行否定。而否命題同時否定條件和結論: 原命題:p⇒q; 否命題:¬p⇒¬q; 逆否命題:¬q⇒¬p; 命題的否定:p且¬q。 原命題與否命題的真假性沒有必然聯絡,但原命題和原命題的否定卻是對立的存在,一個為真另一個必然為假。 已知某命題:若a,則b,則此命題有4種情況: 1.當a為真,b為真,則a⇒b為真,得¬b⇒¬a為真; 2.當a為真,b為假,則a⇒b為假,得¬b⇒¬a為假; 3.當a為假,b為真,則a⇒b為真,得¬b⇒¬a為真; 4.當a為假,b為假,則a⇒b為真,得¬b⇒¬a為真; ∴一個命題與其逆否命題同真假。 即反證法是正確的。 假設¬b,推出¬a,就說明逆否命題是真的,那麼原命題也是真的。 但實際推證的過程中,推出¬a是相當困難的,所以就轉化為了推出與¬a相同效果的內容即可。這個相同效果就是與a(已知條件)矛盾,或是與已知定義、定理、大家都知道的事實等矛盾。 4樓:林清他爹 我告訴你怎麼來的 證明如下: 假設存在a,b兩個數都是函式f(x)當x→x。的極限,且a,根據極限的柯西定義,有如下結論: 任意給定ε>0(要注意,這個ε是對a,b都成立)。 總存在一個δ1>0,當0《丨x-x。丨<δ1時,使得丨f(x)-a丨<ε成立。 總存在一個δ2>0,當0《丨x-x。丨<δ2時,使得丨f(x)-b丨<ε成立。 上面的不等式可以等價變換為a-ε 令δ=min,當0《丨x-x。丨<δ時。①,②兩個不等式同時成立。 因為①,②兩個不等式同時成立,所以①式右端必定大於或等於②式左端。 即:b-ε≤a+ε,移項得:(b-a)/2≤ε,因為(b-a)/2是一個確定大小的正數,所以這個結論與極限的定義: ε可以任意小矛盾,所以假設不成立,因此不存在a,b兩個數都是f(x)的極限,除非a=b矛盾才不會出現。 倘若是x趨於無窮大時的唯一性證明可以參看高數書數列極限唯一性證明,證法完全一樣。證畢。 5樓:匿名使用者 這樣a與b的ε=(b-a)/2鄰域正好無交集,取得更小點也行,但最大隻能取這個,否則兩個鄰域的交非空,證不出 用反證法證明數列極限唯一性的時候,為什麼要假設ε=(b-a)/2?目的是什麼?求詳解!謝謝! 6樓:匿名使用者 這樣a與b的ε=(b-a)/2鄰域正好無交集,取得更小點也行,但最大隻能取這個,否則兩個鄰域的交非空,證不出 用反證法證明數列xn收斂,那麼他的極限唯一。其中為何取€=b-a/2? 7樓:fly瑪尼瑪尼 因為這是a和b的距離的一半,當然你也可以取它的1/3,1/4……,只要是|b-a|的正的常數倍(這個常數小於1)即可 求證極限唯一性,為什麼取ε=(b-a)/2 8樓:pasirris白沙 1、樓上網友的回答,雖然是對的,但是說得太輕鬆了。 無論說得是多麼輕飄飄,還是多麼文縐縐,都給人霧煞煞的感覺。 從微積分教學開始,我們就陷入的這種境地:不得要領。 .2、假設樓主已經完全領略了極限證明背後的嚴密邏輯思維與論證方法,就知道 : a、ε 具有任意性,可以無止境的更改、修正。 b、由於 ε 具有任意性,由 ε 決定的 n 也就有了任意性: 一方面,將 n 任意地放大後,依然還是 n; 另一方面,將 ε 任意縮小後算出 n,就更符合要求。 .3、下面的**就是將 ( b - a )/2 縮小到 ( b - a )/3, 一樣得到結論。 請參看:.. 9樓:持筆桿的魔法師 這並不是說它不能取其他值了,它可以取任意大於零的數。但是,在證明極限唯一性的時候,我們為了方便計算,所以才取的這個值。 10樓:淺草丶若相念 因為用的是反證法,所以只要有一個反例就行 11樓:風火淬鋼 它可以取任何數,取這個只是為了方便證明 高數問題,關於極限的唯一性的證明。圖中為什麼讓ε=b-a/2。為什麼我就想不到取這個值呢?是根據什 12樓:離劫殤 因為這是最大取值,可以比它小但不能比它大,不然a,b的去心領域會相交不是空集,這樣不利於證明! 13樓: 和夾逼想法差不多吧。中值 為什麼證明極限的唯一性的時候,要取ε=(a 14樓:匿名使用者 a、ε 具有任意 性,可以無止境的更改、修正。 b、由於 ε 具有任意性,由 ε 決定的 n 也就有了任意性: 一方面,將 n 任意地放大後,依然還是 n; 另一方面,將 ε 任意縮小後算出 n,就更符合要求。 構造 這樣 xn a 抄 2 xn b 襲2 這樣加起來才有 xn a xn b 我也可以這樣 對應 b a b a 存在n0 n 使得n n0 有 xn a 32 和 xn b 2 3 連個相加還是 xn a xn b 反證法推出矛盾 收斂數列的 極限的唯一性證明,詳細過程 證明 假設 數列an收... 通常給出的極限唯一性的證明並不涉及題主所說的內容。它採取的思路是 版設函式f x 當x趨於權x0時有兩個極限a與b,證明a與b相等。所採取的手段是 證明對於任意給定的 0,都有 a b 這樣就必有a b。假若不然,有 a b 0,取 0 1 2 a b 就會導致 a b 1 2 a b 矛盾!而由極... 假設根號2是有理數,那麼假設根號2 m n m,n都是正整數,且m,n互質,如果不互質,那麼我們還可以約分,就沒有意義了 根號2 m n 兩邊平方化簡 得2n 2 m 2 於是m一定要是偶數,可以設m 2s 其中s是正整數 那麼2n 2 4s 2 化簡n 2 2s 2 於是n也一定要是偶數,於是mn...關於收斂數列唯一性的證明,收斂數列的極限的唯一性證明,詳細過程
收斂函式的性質中極限的唯一性證明中aXnb是如何得到的
根號2是無理數」怎麼證明(用反證法證