一道高中數學題,求一道高中的數學題。

2021-08-11 20:30:41 字數 2433 閱讀 5269

1樓:匿名使用者

在∆abd中使用正弦定理得:2/sin∠adb=5/sin45°,故sin∠adb=(2/5)(√2/2)=(√2)/5;

∴cos∠adb=√[1-2/25)=√(23/25)=(√23)/5;

在∆bcd中,bd=5,cd=2√2,∠bdc=90°-∠adb;∴cos∠bdc=cos(90°-∠adb)=sin∠adb

(√2)/5;∴bc²=bd²+cd²-2bd×cdcos∠bdc=25+8-20(√2)×(√2)/5=25,∴bc=5;

2樓:

解:由題得函式g(x)的定義域為 x>0 對函式g(x)求導,判斷函式的增減性,即: g'(x)=2ax+b+c/x, 若g(x)在定義域內總為增函式則:

g'(x)>0,變形為2ax^2+bx+c>0,因a<0,所以g'(x)有最大值; 若b^2-8ac0,在定義域內g'(x)0且c2)]/2a0,x>1時,為減(結合定義域x>0) (x-1)(x-t)1/2或t<-1,結合t<0 所以t<-1時,不等式t*x^2+2*t^2lnx-2t(t+1)x+10恆成立。

3樓:汗海亦泣勤

判斷函式單調性要求把結果化成乘積或商的形式,因為x2^2-x1^2還不是乘積或商的形式,所以繼續化成x2^2-x1^2=(x2+x1)(x2-x1)乘積的形式這樣才可判斷單調性,這是判斷函式單調性的規定,懂了嗎,忘樓主採納。

4樓:慄雅靜鍾福

把左邊的分子分母同乘以(根號2-a),計算後得出2(根號2-a)/(2-a^2),因為a屬於r,所以分母(2-a^2)小於等於2,所以2/(2-a^2)大於等於1,然後就得出左邊大於等於右邊

5樓:樂正廷謙樓乙

因為點b、c為圓x²+y²=4上的動點,所以設b點座標為(2cosθ,2sinθ),c點座標為(2cosα,2sinα),設△abc重心座標為(x,y),則有x=(2+2cosα+2cosθ)/3,y=(2sinα+2sinθ)/3,所以有3x-2=2cosα+2cosθ,3y=2sinαθ+2sinθ,所以有(3x-2)²+(3y)²=4(cosθ+cosα)²+4(sinα+sinθ)²=8+4(cosαcosθ+sinαsinθ)=8+4cos(α-θ),因為根據圓周角與圓心角的關係可知,∠boc=2∠bac=120°,根據動點b、c的順序關係可知|α-θ|=120°,所以α-θ=±120°,所以有(3x-2)²+(3y)²=8+4cos(α-θ)=6,所以△abc重心軌跡方程為x²+y²-4x/3-2/9=0。

6樓:載利葉朋衣

(1)8=1+1+6=1+2+5=1+3+4=2+2+4=2+3+3所以共有5中情況,根據三角形兩邊之和大於第三邊可知,只有1種情況能構成三角形,所以p=1/5

(2)成功概率是p1=1/3

所以ex=n·p1=4/3

7樓:矯梅花僕俏

從5個球中拿2個球的次數是10次,同時拿2球和為3或6的情況為12,13,2

4,結果為a

如果拿2球時有順序的話就是1

2,21,3

3,15,5

1,24,4

2,7種情況結果為7/10沒有選項

這樣的話應該選a

一道高中數學題?

8樓:匿名使用者

我翻了抄一下以前做過的題目,改編bai了一道12題,應該也不算太難,du用zhi影象法做答案是520(如果需要解答我再另dao發吧,現在沒來得及做),其實稍微改一下就可以變成521了(把函式向右移動  個單位即可)。

題目如下:

已知m是函式  是在  上的所有零點之和,則m的值是__________.

求一道高中的數學題。

9樓:飼養管理

(1)解:設:m=n>0,則:

f(m/n)=f(1)=f(m)-f(n)=f(m)-f(m)=0即:f(1)=0

(2) 解:

f(x+3)-f(1/3)=f((x+3)/(1/3))=f(3x+9)

因為:函式的定義域是(0+∞)

所以:3x+9>0

解得:x>-3

因為:f(x/y)=f(x)-f(y)

所以:f(x)=f(x/y)+f(y),

所以:f(36)=f(36/6)+f(6)=2f(6)=2由於函式是增函式,所以:f(3x+9)<2=f(36)即:3x+9<36

解得:x<9

所以:-3

一道高中數學題。簡單? 10

10樓:匿名使用者

這個是填空題嗎?如果是大題就太簡單了!先求fx等於1可以求得x等於0或者x等於1對比影象 單調性可得t等於0

11樓:匿名使用者

不知道這樣解,你能不能理解。如圖

問一道高中數學題,問一道高中數學題

先站4個男生有a44 24種站法,再排3個女生有a33 6種站法,再把排好的女生插入男生佇列中又有a44 24種站法,因為是分佈完成的,所以一共有24 6 24 3456種站法 1解4!3!4 576 4!表示4個男生全排列,3!表示3個男生全排列 後面的 4是男生的 空有4個可以去插入女生 2解 ...

一道高中數學題急求答案,一道高中數學題 急求答案

別參照那個連結,題目不一樣的,mb mc 修路費用那道題是a和2a,本題都是a pq是雙曲線 根據雙曲線定義 由於修路費用相同,問題簡單了,就是求pq上一點到b c的距離最短,顯然是bc連線與pq交點,其實就轉化成了求bc距離問題。過c做ab的高cd 1 bd 4 3 bc 20 8 3最小費用就是...

一道高中數學題求解答,一道高中數學題求解答

分別討論當a 0時的一元一次方程,與a 0的一元二次方程,並討論根的個數。本題根據a 0時,不等式左邊變成一元一次方程式看,a 0時,不等式左邊變成一元二次方程式 或拋物線函式 看。具體計算過程如下圖所示 你再好好想想看,相信你一定做得出來 分a大於等於0和a小於0分別討論。思路 假設不等式等於0,...